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CHAPTER 16

THINKING ABOUT ITEM
RESPONSE THEORY FROM A
LOGISTIC REGRESSION
PERSPECTIVE

A Focus on Polytomous Models

Amery D. Wu and Bruno D. Zumbo

The purpose of this chapter is to describe the conceptual bridge between
item response theory (IRT) and logistic regression (LogR) by describing
the essential similarities and differences between these two statistical
frameworks. In so doing, we foster knowledge translation from psycho-
metrics to those disciplines extensively using LogR (e.g., sociology, health
care, and epidemiology) hence increasing the use of IRT. Therefore, the
goal of this chapter is to advance the use of item response theory in real
data analyses settings. Furthermore, it becomes apparent early on in this
chapter that IRT is a special case of LogR, hence one can not only use
LogR as a perspective to describe IRT to novices but also as a way of IRT
specialists gaining insight into complex models such as polytomous IRT
and their assumptions.
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It should be noted that we are not suggesting that we have built the
bridge between LogR and IRT but rather that we are describing this
bridge and using it as a way of getting from one vantage point to the
other. The chapter is organized in three major sections traveling along
the bridge from LogR to IRT. The first section is a brief overview of the
family of logistic regression models. The second section describes the
bridge between LogR and IRT. In the third section, IRT is described from
the vantage point of LogR with particular attention to how these IRT
models are constructed and their assumptions. This description of IRT
will focus, in particular, on organizing and articulating the variety of poly-
tomous IRT models because polytomous data are commonly found in
day-to-day research settings yet polytomous IRT is seldom applied. It
becomes apparent throughout that the LogR perspective brings a useful
organizing framework and allows one to fully appreciate the range of IRT
models and their assumptions.

A BRIEF OVERVIEW OF THE
FAMILY OF LOGISTIC REGRESSION MODELS

The use of LogR has greatly increased during the last decade and become
routinely available in statistical packages (Hosmer & Lemeshow, 2000;
Peng, Lee, & Ingersoll, 2002), especially in areas like medicine, health sci-
ence and epidemiology. The goal of LogR is to model categorical out-
come variables by regressing on some explanatory variable(s) (Hosmer, &
Lemeshow, 2000); LogR is an engine for modeling categorical outcome
variables that are unlikely to meet the demanding assumptions of least
squares regression. LogR only assumes “conditional independence”
which means that the error terms are uncorrelated and that a linear rela-
tionship between the explanatory variable and the logit outcome variable
(as discussed later).

. Generally speaking, categorical outcome variables can be classified
into two kinds: (1) nominal, if the variation between/among the possible
outcomes is in the form of “types” such as types of learning strategies, and
(2) ordinal, if the possible outcomes can be logically “ordered” such as
grades. Under each of the nominal or ordinal form, the outcomes vari-
able may take up two or more categories. When there are only two catego-
ries, the outcome variable is referred to as binary; and polytomous if there
are three or more categories. Because there are only two possible out-
comes for a binary variable, the distinction between whether a binary out-
come variable is nominal or ordinal is usually regarded as irrelevant. For
this reason, the majority of the textbooks and statistical software often
organize LogR analyses into three sections: binary LogR, ordinal LogR,
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Table 16.1. Classification of LogR and IRT Models

Number of Categories for the

Owlcome Variable LogR Models IRT Models
2 (binary) Binary LogR Binary IRT (1, 2, or 3 PL)
More than 2 (polytomous)
Ordinal Ordinal LogR PC (IPL}, RS (IPL), GR (2PL)
Nominal Multinomial LogR ~ NR (2PL)

Note: LogR = logistic regression, IRT = item response theory, PL. = parameter logistic,
PC = partial credit, RS = rating scale, GR = graded response, and NR = nominal
response.

and multinominal LogR. When the outcome variable is binary, one can
simply apply binary LogR regardless of whether the outcome variable is
nominal or ordinal. When the outcome variable is polytomous, one can
apply multinomial LogR if the outcome variable is nominal, or ordinal
LogR if ordered. Table 16.1 is a summary of our above description of the
LogR models—we will return to Table 16.1 when we describe the IRT
models and connect them to their corresponding LogR models. The first
column of Table 16.1 classifies the three types of LogR by the number of
outcome variable categories. Note that polytomous LogR models can also
be applied to binary outcome variables and yields the same results. This is
because a binary outcome variable can be seen as a special case of polyto-
mous variable with only two categories.

BINARY LOGISTIC REGRESSION

A simple LogR with one explanatory variable and one binary outcome
variable can be expressed as a probability function

_ _ exple+o0X]
Plu=11%) = 1 + exp[c + oX] )

where u 15 a discrete random variable that takes up the sample space of
“1” (a.k.a., case; success) or “0” (a.k.a., noncase; failure); X is an explana-

tory variable; the “exp” denotes the operator! that returns ¢ (the base of
natural logarithms) raised to a power; ¢ and o are the intercept and the
regression coefficient, respectively, for the linear regression in the logit
form discussed below. The expression P(u = 1|X) can be read as “the
probability of success/case given X, for example, the probability of having
lung cancer given that one smokes.” '
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Readers may have noticed that we used somewhat different notatiop
from those of most textbooks; this is because our notation will serve ¢q
maintain the consistency in our later discussion of IRT models. To estj.
mate the regression coefficients, LogR makes use of the maximum likel;.
hood method where one maximizes the likelihood function given the data
at hand. For mathematical and practical simplicity, however, one actually.
minimizes the -2 log likelihood function. The Wald statistic and its associ-
ated p value are used to test the significance of individual coefficients.
The amount of reduction in -2 log likelihood minimized by adding the
explanatory variable compared to the base model that includes only the
intercept term serves as a model fit statistics. In other words, a perfect fit-
ting model will minimize the starting -2 log likelthood (a.k.a., deviance)
to 0. A variety of effect size measures such as Nagelkerke R-square and
Pseudo R-square were proposed to mimic “the percentage of variance
explained” in linear regression.

Modeling the occurrence of a certain outcome is related to another key
feature of LogR: the nonlinear relationship between the “probabilistic”

[ outcome variable and the explanatory variable. The nonlinear relation-
. ship for a binary LogR is often characterized by a monotonically increas-
s ing S-shaped curve. Note that the modeled variable, Pu = 1|X), in

~ Equation 1 can be transformed by taking the natural logarithm of the
—— odds (i.e., the ratio of probability of outcome being 1 to the probability of
e not being 1), and yields
- o
. Plu=1]X) 1 _
Logit = IH[MI—P(uzﬂX):I = ¢+ o0k, (2)
or simply
Logit = c+ X, (3)

where o is analogous to the regression coefficient and ¢ to the intercept in
linear regression. Two things should be noted here. First, LogR does not
model the raw response (i.c., 0 and 1); instead, it models the probability
or the logit. Second, the logit is assumed to be linear in its coeflicients
and is continuous ranging from —oo to +o. The transformed logit regres-
sion models given in Equation 2 or 3 have many of the desired properties
of a linear regression model, and hence, the LogR model is regarded as a
type of generalized linear model.
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POLYTOMOUS LOGISTIC REGRESSION:
MULTINOMIAL AND ORDINAL

For binary LogR, there are only two possible outcomes, 0 and 1. Modeling
the probability of outcome “1” occurring, P, is sufficient because the prob-
ability of “0” occurring is simply 1 — P. In contrast to binary LogR, multi-
nomial and ordinal LogR involve more than two possible outcomes;
therefore, require simultaneously fitting multiple regression curves. As a
general rule, for an outcome variable that consists of / + 1 categories, [
regression analyses will be entailed. Here J is the maximum coding of the
outcome categories when the coding of the possible outcomes begins with
0. For example, an outcome variable that is measured on five ordered cat-
egories such as strongly disagree, disagree, neutral, agree, and strongly
agree and is coded as 0, 1, 9.3, and 4 will have a2 maximum coding of /
equals to 4. Hence, four regression lines will be fitted for the/] +1 =5
response categories. This systematic notation of 7J” is capable of provid-
ing a lot of information about the specification of a model including the
coding for the possible outcomes (ie, 0, 1, ..., J) maximum value for
outcome coding ( J), number of outcome categories {J + 1), and number
of regression analyses involved (/). Hence, this notation will be used
throughout the rest of this chapter.

There are numerous ways of specifying the probabilities for the J + 1
outcomes occurring (see Agresti, 2002, chapter 7). For nominal outcomes,
multinomial LogR involves a direct method of specifying Pu = jIXnj=0,
1, 2, ..., J, which means that the probability is obtained directly by a
divide-by-total procedure such that

= = 2 @

3 exp[cj+an]
ji=0

with ¢g = 0 and 0y = 0. For ordinal outcomes, the most common method

for specifying the probabilities for the J + 1 outcomes is an indirect (a.k.a.,
difference) method using the cumulative logit (see O’Connell, 2006 for
other ordinal LogR models). Namely, the ordered categories are con-
trasted into J dichotomies such that responding in u Sj is contrasted with
u > j. For example, suppose that the outcome variable has four ordered
categories coded as 0, 1, 2, and 3, three (J = 3) regression analyses will be
entailed and are achieved by contrasting the ordered outcomes into three
dichotomies: (i) 0 versus 1, 2, and 3 (i1) 0 and 1 versus 2 and 3 (iii) 0, 1,
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and 2 versus 3. This cumulative contrasting is most widely used and the
cumulative probability is written as

exp[cj+0LX]
, Or
1+ exp[cj+ oX]

P(u<j|X) = (5)

. Plu<j
Logit = ln[P—g#_ll‘;g] = ¢+ oX. (6)

Note that there is no subscript for the o slopes across the cumulative log-
its. This is because the slopes, most commonly, are assumed to be equal
(i.e., parallel) in cumulative logit LogR. This equal slopes assumption in (5)
and (6) is also referred to as proportional odds assumption (Agretsi, 2002, p.
275). The cumulative logit LogR is the default model in SPSS and SAS
and is the mostly commonly applied LogR model for ordinal outcomes,
Because ordinal LogR models the cumulative probabilities, the probabil-
ity of a specific category occurring must be written as a difference between
two adjacent cumulative probabilities such that

Later in our discussion readers will see that one of the ordinal IRT mod-
els, the Graded Response model, is built on very similar conceptual

frameworks and assumptions in expressing the probabilities of examin-

ees’ specific response to test item.
‘To reiterate our brief introduction on LogR: The goal of LogR is to

‘model the nonlinear probabilistic relationship between a categorical out-

come variable and the explanatory variable(s). The logit form of the
regression is assumed to be linear in its regression coefficients: intercept
and slope, and can be classified as a generalized linear model, There are
three major classes of LogR models: binary, ordinal and multinomial. The
choice of which model to apply depends on the metric, nature, and num-
ber of the categorical outcome variable. For polytomous LogR models, /
regression analyses are entailed for the J + 1 possible outcomes and the
probability of an individual outcome can be obtained by direct or indirect
specification. In addition to logit linear and conditional independence,

~ the proportional odds ordinal LogR assumes equal slopes across the

cumulative logits. These backbones of LogR foreshadow our discussions
on IRT as a special form of LogR in the next section. Readers interested
in LogR should consult Hosmer and Lemeshow (2000), Menard (2001),
(’Connell (2006) or Peng et al. (2002) for more details.
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DESCRIBING THE BRIDGE BETWEEN LOGR AND LOGISTIC IRT

Although IRT and LogR seem to share little in common on the surface,
the embryo of using logistic regression groundwork in developing IRT
can be traced back to Birnbaum (1968) and Rasch {1960). However, users
of neither methods have explicitly described the affiliation between the
two methods, and, consequently, there has been a lack of conceptual and
organizational framework linking these two popular methods. In addi-
tion, we believe, that IRT is used less often in day-to-day research practice
because it is often portrayed as a distinct method from what is widely
known, such as LogR and regression modeling.

How is IRT connected to and distinct from LogR? In broad strokes,
IRT and LogR are both branches of generalized linear models except that
the explanatory variable in IRT is a latent variable, as opposed to an
observed variable in LogR. For this reason, IRT is referred to as, to be more
precise, a generalized linear latent model. Another major distinction, which is
also related to the construction of the latent explanatory variable, is that
IRT simultaneously model a number of categorical outcome variables. In
LogR language, IRT runs multiple regression analyses at the same time.
We will further explain these two distinctions in our subsequent discus-
sions. However, at this point, it is more important to foreshadow that IRT
s connected to LogR because they share the same framework and mecha-
nism. These commonalities include the purpose, the assumptions, the
shapes of the regression curve, the coding system, the specification of the
probability, the estimation method, as well as the classification and choice
of major IRT models explained hereafter.

IRT is defined as a model-based measurement theory that aims to
- specify a mathematical function relating the probability of an examinec’s
response on a test item to an underlying ability (van der Linden & Hamb-
leton, 1996). Often, the choice of the mathematical functional form is a
logistic curve. Namely, IRT uses a logistic curve to depict the nonlinear
probabilistic relationship, Item Characteristic Curve (ICC, see Figure
16.1), between examinees item response and their ability. Here, ability,
often denoted as 6, is a generic term used in IRT literature to represent
the underlying characteristic, construct, or trait being measured. Hence,
in a regression sense, IRT intends to regress a categorical outcome vari-
able, item response, onto the explanatory variable, the examinees’ ability. In
addition to the conditional independence assumption, the relationship
between the logit-transformed jtem response and ability is assumed to be
linear. In this sense, IRT uses the logistic function to model an item
response and can be regarded as a type of generalized linear model.

However, note that what makes IRT distinct from a typical LogR is the
nature of the explanatory variable. Normally, the explanatory variable in
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a LogR is an observed variable where data is obtained from the direct
observation of the sampling units, whereas the explanatory variable in
IRT, 0, is a continuous latent variable—an unobserved variable that must be
created and estimated. This continuous latent variable 0, in short, is con-
structed by exploiting the joint probability distributions of the examinees’
responses to a studied item and the rest of the test items. Therefore, whep
building an IRT regression model, one must simultaneously estimate the
explanatory variable, which is the person parameter 8 and the regression
coefficients, which are the item parameters. As a side note, there exists an
analogy between least squares regression and normal theory factor analy-
sis. That is, one can simply conceive of factor analysis as multivariate ordi-
nary least squares regressions with the latent continuous explanatory
variable(s) (i.e., factor, also called the latent variable) being the predic-
tor(s), which are created by accounting for the inter-correlations among
the observed continuous variables. Despite these two major differences,
the same principles of classification and choice of models apply to IRT.
Binary IRT model is designed for binary item response. When item
response is polytomous, nominal response IRT model is the choice if
response categories are nominal, otherwise ordinal IRT model.

LOGISTIC IRT AS A SPECIAL CASE OF LOGR
Binary Logistic IRT

In this chapter, the notation used to describe IRT models will follow
those of Embretson and Reise (2000). For the purpose of easy illustration,
we will restrict the subsequent discussions of LogR and IRT to only one
explanatory variable. Often, the number of sufficient item parameters
assumed to aptly fit the data classifies IRT models (a.k.a., 1PL, 2PL and
3PL, etc.). In LogR language, the number of (item level) regression coeffi-
cients needed to accurately describe the relationship between examinees’
ability and the item responses classifies IRT models. The binary logistic
IRT model given below includes three parameters (i.e., 3PL) and is in the
most general form,

é,xp[oa (6-B)1
P(ui = lle, a’i’ Bjs 'Yl) = yi + (I _yi)l + exp[la(e —IB')} ’ (8)
i !

where
i=Pitem; 0, 1, ..., I

u; = the item response of an examinee to item i (0 or 1)
0 = the ability level of an examinee

I~ ,rf-lT
t




Thinking About Item Response Theory 2492

o; = the discrimination (a.k.a., slope) for item i
B; = the threshold (a.k.a., difficulty) for item i
y; = the lower asymptote (a.k.a., pseudo-chance) for item i.

Note that we have not indexed 8. Instead, we treat it as a random vector
with dimension equal to the sample size N. Figure 16.1 shows the ICC for
a hypothetical item with item parameters o = 1.5, B = 0.5, and y=0.1.
One can see that the x-axis is the latent continuous ability 6 scaled to a
mean of 0 and standard deviation of 1. The probability of w = 1 shown on
the y-axis given the item parameters is a function of examinees’ 0. The
discrimination parameter, o, is related to the slope at the point of inflec-
tion of the ICC indicating how precise or sensitive an item is in discrimi-
nating an examinee with high ability from one with low ability. The

seudo-chance parameter, 7, is located at the point on the y-axis with
which the lower asymptote intersects. The pseudo-chance parameter indi-
cates the chance of endorsing or getting an item right with no or little of
the ability being measured (e.g., 8 = -3). The threshold parameter, B, is
the value on the 8 continuum with which the vertical line drawn from the
inflection point intersects. The threshold value indicates how much ability
examinees would need to have a (1 + Y)/2 chance of endorsing or getting
an item right (.e., 0.5 for 1PL and 2 PL models because ¥ = 0).

1 -
—
£
5
<
705
i
‘-:?/
[T
Ability (8)
0 : ;
-3 2 -1 0 1 2 3

Figure 16.1. Item Characteristic Curve (ICC) for binary item response.
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Note that the structure of Equation 8 looks very similar to that of the
simple binary LogR given in Equation 1, the only difference is that the
IRT model is more elaborate in two ways: First, a latent variable § js
involved, and second, a larger number of coefficients (i.e., item parame-
ters) are specified. The term “(© — [;)” represents the discrepancy
between how much ability an examinee possesses and how much ability
an examinee should possess to have a (1 + 7;)/2 chance of endorsing or
getting item ¢ right (i.e., item threshold). Hence, one can understand
Equation 8 as “regressing the probability of getting an item right onto
the term (0 — 3;).”

One can easily construct the 1PL and 2PL IRT models by removing the
unnecessary parameters in Equation 8. To show the connection between
LogR and IRT, a 2PL model for item i is shown below by removing the ¥y,

parameter,
P(u=10,0,B) = expla(8—B)]

S (=116, 00 B) = T~ B)] )
.

R In Equation 9, if we treat (6 — B) as our explanatory variable by relabeling
= it with X and add a zero intercept term, ¢, we get a variation of the basic
— LogR Equation 1, '

| Ply = 1 _ _exple+oX] ,
\I (u O 1 + explec + aX] (19)

where X = 0-B), and ¢ = 0.

One can see that the 2PL IRT model in Equation 10 is identical to the
binary LogR model in Equation 1. Of course one can also perform the
logit transformation to Equation 10 and obtain expressions like Equations
2 and 3 and show that 2PL IRT logit is linear in its coefficients, and hence
can be classified as a generalized latent linear model. These simple math-
ematical manipulations demonstrate that unidimensional IRT (i.e.,
involving only one ) indeed is a simple LogR model. Same as LogR, esti-
mation of IRT person and item parameters makes use of maximum likeli-
hood estimation methods, or sometimes Bayes estimation methods, which
we will not explain in detail in this chapter. Interested readers are
referred to Baker and Kim (2004) for details or Embretson and Reise
(2000) and Hambleton, Swaminathan, and Rogers (1991) for a concise
mtroduction.

i
_
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In summary, IRT uses LogR function to characterize the nonlinear
relationship between the probability of a categorical item response and a
continuous latent variable 8 by estimating the necessary item parameters.
Given that IRT is a type of LogR, one way of classifying the IRT models is
to follow Table 16.1, which is organized by the number of response cate-
gories. Focusing on column three of Table 16.1 one is able to map our
subsequent discussions on the commonly used polytomous IRT models.

POLYTOMOUS LOGISTIC IRT

Apparent in the labeling, polytomous IRT models refer to modeling item
responses that take up three or more categories. Following our earlier
classification of LogR in Table 16.1, there are two divisions of polytomous
IRT models classified by the metric nature of the item response: ordinal
or nominal. However, to better understand our discussion of the two divi-
sions of polytomous IRT models, we need to preface our discussion by
looking at the similarities with and differences between binary and polyt-
omous IRT models and some common features of the various polytomous
IRT models.

Same as binary LogR, binary IRT models require only one regression
analysis, P(u = 1}, to describe the probabilistic relationship. This is
because the probability of the only other outcome, P(u = 0), is simply
equal to 1 — P(u = 1) as in Figure 16.1. In fact, in the logit form of the
regression equation as in Equation 2 and 3, it is written as the ratio of P(u
= 1) to P(u = 0) to uniformly express the linear relationship. However,
for the same reason as we discussed on polytomous LogR, polytomous
IRT models involve multiple response categories. Consequently, one has
to model multiple relationships for each item. In other words, for each
item in a test, a series of multiple Category Characteristic Curves (CCCs)
will be modeled (Dodd, 1984). Modeling multiple relationships is often
done by some kind of contrasting among the response categories as we
discussed in LogR: the maximum code and the number of analyses
entailed are equal to J for the J + 1 categories when the lowest category is
coded as 0. In other words, within each item, it takes J steps (i.e., thresh-
olds) for an examinee to stride from the lowest response category, 0, to
the highest, /. Note that the number of response categories does not have
to be equal across items. Another important notion is needed to prime
our polytomous IRT discussions. For polytomous IRT models, there is a
hierarchical structure of parameters involved. At the test level, a polyto-
mous IRT will simultaneously model a number of items and their corre-
sponding item parameters may or may not vary across items. At the item
level, in the meantime, a polytomous IRT will simultaneously model a

_
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number of response categories within each item, and their corresponding
parameters may or may not vary across categories.

In sum, historically, a variety of polytomous IRT models were devel-
oped to appropriately describe the multiple probabilistic relationships
varying in these regards: (1) the metric nature of the item response, (2)
the methods of contrasting among the J + 1 multiple response catego-
ries, (3) within an item, how the parameters are assumed across response
categories, and (4) within a test, how the parameters are assumed across
items. The first three points are analogous to LogR whereas the last
point is unique to IRT. Obviously, modeling polytomous IRT is far more
complex than the binary models. What are the justifications and payoffs
for choosing the more complex polytomous models over the binary
models? Ostini and Nering (2003) and van der Ark (2001) listed three
major reasons for preference for polytomous items over binary items.
First, polytomous responses provide more precise information than
binary responses. As a result, fewer items are typically needed to achieve
the same degree of reliability. Second, some psychological constructs are
often measured on rating scales. Last, certain kinds of item responses
(i.e., those that are naturally ordered) are better characterized on an
ordinal scale. For these reasons, polytomous. IRT is believed to be a sta-
tistically more malleable and practically useful for polytomous responses.
However, because of its statistical complexities in applications and inter-
pretations, polytomous IRT models are less often discussed than they
should have been. Therefore, by using the conceptual framework of
LogR, we hope our discussions will disentangle the complexities and
elucidate understanding of the polytomous IRT models. Before proceed-
ing, therefore, readers may wish to review the aforementioned similari-
ties and distinctions between LogR and IRT as in Table 16.2, which is a
summary of the above description.

The following remarks provide an overview of four commonly applied
polytomous IRT models: three IRT models for ordinal responses and one
IRT model for nominal responses. Readers are directed to de Ayala
(1993), Embretson and Reise (2000), Ostini and Nering (2005), van der
Ark (2001), or Van der Linden & Hambleton (1996) for more technical
details and alternative models. Also, acknowledging the inconsistency and
complexity in the notation and terminology used in the polytomous IRT
literature, we attempt to synthesize the discrepancies in the terminology
and minimize the number of necessary notations needed to express across
various polytomous IRT models. For this notation system to work, the
coding of polytomous response categories should follow the coding sys-
tem we mentioned throughout our earlier discussions.

Ié g
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Table 16.2. Similarities and Distinctions
Between LogR and Logistic IRT

Probability modeling
Regression function
Estimation method
Classification

Distinctions

Direct or indirect
Logistic

Maximum likelihood
Binary, ordinal, nominal

Logh

Stmilarities LogR IRT

Purpose Modeling categorical Modeling categorical item
outcome variable response

Model assumption Conditional Conditional independence
independence Logit linear {1PL, 2PL)
Logit linear

Outcome category coding 0, 1, ..., JforJ + 1 0,1,....J for] + 1 categories
categories

Direct or indirect

Logistic

Maximum likelihcod (or Bayes)
Binary, ordinal, nominal

IRT

Explanatory variable

Number of outcome
variables

Parameter assumption

Observed categorical or
continuous

Modeling one outcome
variable at a time

Only across response
category assumption

Latent continuous

Modeling multivariate items
simultaneously

Both across item and across
response category assumptions

ORDINAL ITEM RESPONSE
Partial Credit Model (PC)

Self-evident in the labeling, the 1PL partial credit model was originally
developed by Masters (1982) to model partial credits assigned to examin-
ees, who respond to test items involving multiple steps. For example, an
item may instruct examinees to resolve the height of a triangle as the first
step and then resolve the area of the triangle as the second step. One par-
tial credit will be assigned to an examinee who only correctly solves the
first step; two full credits will be assigned to an examinee who correctly
solves both steps; and no credit will be assigned if an examinee does not
successfully solve the first step given that one is unlikely to successfully
solve the second step without correctly solving the first. Using our coding
system, each examinee will receive a score, # = 0, 1, or 2. The maximum
value / and the number of logistic regression analyses entailed are equal
to 2 for the J + 1 = 3 response categories. In PC models, the probabilistic
relation is specified as a direct IRT model like the multinomial LogR. As
described in LogR introduction, the probability of getting a particular
credit (i.e., category) is written directly as an exponential divided by the

i e, .
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sum of all the exponentials that can possibly appear in the numerator
(Embretson & Reise, 2000, p. 105) as below:

exp[ % (6- ij)]
j'_

=0

ij(e) = (i

J J ’
3 [exp p (9“[5,-1-):\
0

j= j=0

y(0-8;) =0 when u; = 0, P;(6) = the probability of u = j for item :
given 0.

An example will make Equation 11 more accessible. If the it item is
scored on a scale of 0, 1, 2, and 3, the probability ofu =2,] = 3 would
have a numerator of Exp[(0 — Bg) + (6 — B))+ (8 — Bg)] and a denomina-
tor of Expl(® - Ba)] + Expl(© — Bo)+ (6 — Bp)] +Exp[(® - o) + €~ B)
+ (8 - Bg)] + Exp[(®@ —Bg) + (0 —By) + (0~ By) + (8 — Bg) 1. In words,
for item i, the numerator is the exponential of the cumulative (6 ~ ;) up
toj = u, and the denominator is always the same, which is the sum of all
the possible numerators. As one can see in Equation 11, PC models
assume that only the step parameters By (e, threshold} is needed to
specify the probabilistic relationship between the multiple response cate-
gories and 6, and are interpreted as thresholds for transition from one
category to the next. The step parameters are located at the intersec-
tion points between. two. adjacent CCCs indicating where on the 6 con-
tinuum the response of one category becomes relatively more likely than
the previous category (see Figure 16.2). Readers should be cautious not
to interpret step parameters as the point on the 8 continuum where an
examinee has a 50% of responding above a category threshold. Using
the example of the area of a triangle, the PC model requires that the
steps within an item be completed in sequence, although the steps need
not be equally difficult, nor be ordered by the levels of difficulty. When
the step difficulties are not ordered (see the example in Embretson &
Reise, 2000, p. 109), a reversal is said to exist (Dodd & Koch, 1987). In
PC models, the slopes (i.e., the discrimination) for the CCCs across the
response categories are assumed to be equal and fixed at 1, hence drop
out of Equation 11. De Ayala (1993) showed that the Rasch model
(binary, 1PL, 0; = 1) is simply a special case of the PC model with two
response categories. Like the Rasch model, packaged with the equal dis-
crimination assumption, PC models have the advantage of using the
total score as a sufficient statistic for estimating examinees’ 8 score.
Because only the sz parameter is estimated, the sample size required to
obtain quality item and category parameters is smatler than the 2PL
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olytomous IRT models discussed later. However, the assumption of
equal slopes (i.e.m discrimination) across items and category parame-
ters, at the same time, restricts the use of PC models in practice. For this
reason, Muraki (1992, 1993) proposed the Generalized Partial Credit
model (GPC) where item discrimination parameters are allowed to vary
aCross items.

To illustrate a PC model, we used the item parameters of Table 5.5 in
Embretson and Reise (2000, p. 108). The item parameters were esti-
mated based on 350 undergraduate students who responded to the 12
items on the neuroticism scale of the Neuroticism Extroversion Open-
ness Five-Factor Inventory (NEO-FFT) (Costa & McCrae, 1992). These
items were scored on a 0 to 4 scale (0 = strongly disagree; 1 = disagree; 2
— neutral; 3 = agree; 4 = strongly agree). Figure 16.2 shows the CCCs and
the four threshold parameters for item two: “I feel inferior to others.”
Note that the threshold parameter ;1 between item categories 0 and 1 is
the intersection of the two CCCs and is located at the point —1.763 on
the O continuum. In addition, the four thresholds divide the 8 contin-
wum into five intervals and each interval encompasses the 6 range
~ where a specific response category is more likely. For example, if a
respondent has a © value between ~1.67% and 0.080, as shown in Figure
16.2, he or she will be estimated to endorse “17 more likely than other
response categories.

Rating Scale Model (RS)

Extended from the PC models, Andrich (19784, 1978b) proposed a
1PL polytomous IRT model to accommodate the rating scale type of
responses. In performance or achievement tests, it is logical that a test
item requires multiple steps for completion, and the step difficulty
would differ across steps and across items. However, it is reasonable to
assume that the threshold values would remain very similar across items
for an attitude rating scale with common anchors such as 0 = strongly
disagree, 1 = disagree, 2 = neutral, 3 = agree, and 4 = strongly agree.
Namely, a set of ordered J-step parameters (i.e., category thresholds) is
well suited for all items in a measure. Yor this reason, a step threshold
Bjj in the RS model is decomposed into two parts, B; and &, where By =
B; + 9. For each item, there is one B; threshold parameter that is
allowed to vary across items. The set of 8;s are the category level param-
eters and are fixed to be the same for all items in a test. If one substi-
tutes f; + §; for By in Equation 11 for the PC model, one would get the
expression as below:
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- Figure 16.2. Category Characteristic Curves for the PC Model.
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where 3[0- (B,+3)] = 0 when; = 0.

The interpretation for the parameters B;; is the same as that of the PC
model; They are thresholds for transition from one category to the next
and are located at the intersection points between two adjacent CCCs,
indicating where on the 6 continuum the response of one category
becomes relatively more likely than the previous category. Figure 16.3
illustrates the CCCs for a RS model using our carlier example item 2. We
see that, for item two, Bs = 0.300, and the set of 3s are: §; = —1.600; 3 =
0.224; 83 = —0.184; &, = 1.560. This set of four 8s was estimated and

i E B
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fixed for all the items in the scale despite that item threshold parameters,
B;, are free to vary across items such as 0.300 estimated for our example
item 2. Using B;; = B; + 8;, we yield threshold values for item two: Bg;= —
1.300; Pgo = 0.524; Bgg = 0.116; P4 = 1.860. One can see that the RS
model is more restricted than the PC model because it assumes the set of
category thresholds is equal across items in addition to equal discrimina-
tion assumption in the PC model.

As with the PC model, the conditional probability of endorsing a par-
ticular point on the rating scale can be obtained through direct operation
specified in Equation 12. The RS and PC models share the same advan-
tages and drawbacks because they are both 1PL models assuming item
and category discrimination parameters to be “1.” One additional limita-
tion of the RS model is that it is not suitable for test items with different
response formats. However, for the same reason, the RS model has the
advantage of being more parsimonious because it entails even fewer
parameter estimates than the PC model. Another advantage is that this
set of identical categorical threshold estimates could provide some infor-
mation on the psychological distances between the scale points for the
underlying construct being measured.

P Pas B2z P 0
1.0 s A .
0.8 -
4
06 - {
3
P
0.4 -
0.2 -
0.0 = 1.300 0416 0524 ' 1.860
-3 -2 -1 0 1 2 3
B, = 0.300 ©

Figure 16.3. The Category Characteristic Curve for the RS model.
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Graded Response Model (GR)

Samejima (1969, 1996) developed the 2PL GR models for ordered cat-
egorical response. In the GR model, the response categories are con-
trasted with J dichotomies such that responding in u; < j is contrasted
with ; 2 j. For instance, an jitem with 5 score points, 0, 1, 2, 3, and 4,
would have four contrasting dichotomies as: (1) 0 versus 1,2, 3,and 4; (2)
0 and 1 versus 2, 3, and 4; (3) 0, 1, and 2, versus 3 and 4; (4) 0, 1, 2, and
3 versus 4. Consequently, the GR mode! specifies the probability in terms
of responding in u; or higher (; 2 j) in relation to 9 scores. In other
words, for each of the J dichotomies, a probabilistic relationship will be
modeled. Embretson and Reise (2000) referred to the J curves as Operat-
ing Characteristic Curves (OCCs) and can be written as,

s explo(6-P;)] . _
P(u2j|0) = ol @Byl j=0, 0] (18)

where P(u 2 j|0) is the probability of responding in a particular category
score j or higher on item i. Hence, the probability of responding in the
lowest category or higher, P;o(8), is equal to 1. Note that the contrasting
and probability modeled are opposite to those of LogR we introduced
earlier where u <j is contrasted with » > j and the cumulative probability
of P(u <j|X) is modeled. However, the logic for contrasting the / + 1 out-
comes using J cumulative dichotomies remains the same. The B,; parame-
ter in the GR model is the threshold indicating the 6 level needed to
make a response that is equal to and greater than the threshold j with a
50% probability for item ¢ (see Figure 16.4). In the GR mode}, the discrim-
ination parameéters o are always allowed to differ across items. However,
the slopes may or may not vary across response categories within an item.
When ¢ is constant across the response categories, it is referred to as a
homogeneous GR model and when ¢; is not constant across resporse cate-
gories, it is referred to as a heterogeneous GR model. Homogeneous GR
models are more commonly applied in practice and are conceptually
equivalent to the cumulative logit LogR, where the slopes are assumed to
be parallel. Figure 16.4 illustrates the OCCs for our example item 2 based
on the homogenéous GR Model. The corresponding parameters are:
oy = 1.42 and Bg; = —2.07; Py = —0.22; Bog = 0.93; Boy = 2.42.

As in the cumulative logit LogR for ordinal outcomes, the GR models
are viewed as indirect IRT models because the probability of an examinee’s
response to a particular category Py h)(0), hence the CCC, is obtained by,
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Figure 16.4. Operating Characteristic Curves for the graded response \ 'ﬁ{
model.

P;(jin(®) = Py(8) = Pi(j + DO). (14)

For example, the probability of endorsing category 2 would be: Py, 4(0)
= Po(8) — P3(0). In this sense, the GR model is also referred to as a “differ-
ence” model (Embretson & Reise, 2000; Thissen & Steinberg, 1986). Note
that the homogeneous GR model is analogous to the equal slopes model
in ordinal LogR in terms of (a) equal slopes assumption across response
categories and (b} indirect specification of the probability. Figure 16.5
illustrates the CCCs for our example item 2. Note that the middle point
of two adjacent threshold parameters B; and Bi(j + 1yin the CCCs depicts
the point on the 8 continuum where the probability of jth category peaks
on the CCCs. One can see that the CCC for categoryl peaks at the mid-
20N L0228 — —1.145, which
indicates the 0 level needed to have the maximum probability of
endorsing category 1 (i.e., disagree).

Readers may have noticed that, all the three ordinal IRT models we
have introduced assume equal slopes across response categories. How-
ever, the GR model differs from the PG and RS models in three aspects:
(1) PC and RS model fix the values of the category slopes to be 1, whereas

point of ‘Bgl and Pgo, and is equal to
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Figure 16.5. Category Characteristic Curve for the GR model.

the GR model allows the category slopes to be estimated or fixed at values
other than 1 within each item, (2} the discrimination parameters are
allowed to differ across items such as our example item 2 being estimated
at 1.42, (3) items within a test need not have the same number of
response categories like the RS model (i.e., ] does not have to the same
for all items), and (4) the Bij in 2 GR model are always ordered such that

B+ 1> By

De Ayala (1993) showed that 2PL binary IRT models are simply a spe-
cial case of GR models with two response categories. One of the advan-
tages of the GR model is that the item discrimination parameters, unlike
PC, GPC, and RS models, are allowed to vary across items. This advan-
tage is welcomed by a set of test items that are likely to have differential
discrimination power as in the attitude or personality measures. In addi-
tion, the GR model has the flexibility to accommodate test items with dif-
ferent response formats. Notice that a modified graded response model
was developed by Muraki (1990, 1992) to model a Likert-type response
format where the items are of the same number of response categories.
One of the drawbacks of the GR model is the indirect calculation of the

CCCs.
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NOMINAL ITEM RESPONSE
Nominal Response Mode! (NR)

Bock (1972) proposed a 2PL polytomous IRT model characterizing
item responses that were on a nominal scale. His initial intention was to
model the alternatives in multiple-choice items. Conventionally, multiple-
choice items are scored into a dichotomization of correct or incorrect and
modeled accordingly. The NR model argued that the information pro-
vided by examinees’ wrong responses by choosing a certain distracter is
not all the same and should not be treated uniformly as “incorrect.” Mod-
eling an item’s incorrect response o distracters may provide more infor-
mation about an examinee’s level of ability. The NR model is a direct
probability model and can be written as:

xp(c,; + o0
P8 = fp( ke L (15)
> exp(cij+0tij9)
o 0

where Zaij = Zcij = 0 or Oy = €jg = 0.
The o;; parameters are interpreted the same way as the discrimination
parameters in the ordinal IRT, and ¢; are the intercept parameters of the

nonlinear response function associated with jth category of item <. Specif-
ically, ¢ and o are the intercept and the slope, respectively, for the linear
regression in the logit form. Readers should be cautious not to interpret
the ¢ parameter in the same manner as one would interpret the y parame-
ter in the 3PL binary model, which actually indicates the pseudo-chance
parameter of an item. For each item, as usual, there are J threshold
parameters (a.k.a., location parameter in the logit linear literature) that
are often assumed to be unordered, although there are occasions where
data indicates that they are, in fact, ordered. Because Equation 15 is
invariant with respect to translation of the logit, the constraint on

Yoy = ey = 0 or oy = ¢;p = 0 is needed as an anchor to solve the

identification problem. One can se¢ that the expression and identification
restriction in Equation 15 are almost identical to that in Equation 4 for
multinomial LogR except that IRT is subscribed by “i” indicating that “I”
itemns are simultaneously modeled. De Ayala (1992) showed that the
threshold parameters could be obtained by,
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B, = U=0"% (16)

Vooo—og_gy

The B;; parameters are analogous to the step difficulty of the PC model

and are located at the intersection of adjacent CCCs. In fact, all the divide-
by-total or direct methods (e.g., PC model and RS model) can be shown to
be special cases of the nominal response model (Embreston & Reise, 2000;
Thissen & Steinberg, 1986). The NR model is the most general specifica-
tion of polytomous IRT models. This means that it has the least assump-
tions made about the number of item and category parameters as well as
the order of the category thresholds. Namely, both the threshold and dis-
crimination parameters are free to vary across items and across categories
except for the identification restrictions. Like other polytomous IRT mod-
els, the NR model can also be applied to binary item response. To illus-
trate, we borrowed the example of Tatsuoka (1983) in de Ayala (1993): a
multiple-choice item with three options (i.e., two distracters). Using our
notation system, J equals to 2, where the first option was coded as “0,” sec-
ond as “1,” and third as “2.” The J is also the maximum code indicating
that there are J + 1= 3 options. This item is a mathematics addition prob-
lem asking “~6 — 10 = ?” with three alternatives: (a) —16, (b} —4, and (c} 4.
Figure 16.6 shows the values for o were 0y = -0.75, a; = ~0.25, and 0y =
1.0 and, although not shown, the values for c were ¢y = —1.5; ¢; = —0.25; ¢9
= 1.75. Using Equation 16, we yiclded B; = —2.5 and By = -1.6. The

advantage of the NR model is that it is the most flexible model for the
different types of item responses. Its limitation, for the same reason, is that
it is Jess parsimonious to specific types of item responses.

SUMMARY

A brief introduction to LogR was given in terms of the purpose, assump-
tions, functional forms, when to use which LogR models, and its nature as
a generalized linear model. Building on this introduction, we showed that
IRT is a special form of LogR with the explanatory variable being a con-
tinuous latent variable constructed by accounting for the joint distribu-
tions among the test items. In IRT, the probabilistic relationship between
examinees’ responses to an item and their latent ability estimates is
described by a nonlinear logistic function characterized by the item
parameters. In addition to binary IRT, two branches of polytomous IRT
models were described: ordinal and nominal. For ordinal item responses,
the Partial Credit model, the Rating Scale model, and the Graded
Response model were described. These models differ in the manner of
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Figure 16.6. Category Characteristic Curves for the nominal response
model.

how item and category parameters are constructed and how the probabil-
ity is modeled. Table 16.3 summarizes the features of the four polytomous
IRT models discussed in this chapter and Table 16.4 compares their
advantages and disadvantages.

Closing Remarks and Filling in the Portrait of IRT From a
LogR Perspective

Although we have focused on the connection between LogR and IRT, it
is important to note that there is one important difference between these
two methodologies. That is, because the predictor variable is a latent vari-
able logistic IRT models, as compared to LogR, require a large sample
size to achieve unbiased person and item parameter estimates. In addi-
tion, a large number of items are also nceded to guarantee unbiased per-
son parameter estimation and small sample-to-sample variation in theta
estimates. An insufficient number of examinees or items will lead to an
inappropriate specification of the statistical relationship. In the case of
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Table 16.3. Comparisons of the Model Specifications
for Four Polytomous IRT Models

Model PC (1PL} RS(IPL) GR (2PL) NR(2PL)

Across items

o Fixedat ! Fixedat 1 Free Free

B Free Free Free Free
Within an item

o Fixed at I Fixed at 1 Fixed / Free Free

B Free Free, Equal across items Free & Ordered Free
Contrasting coding ~ jvs.all  jvs.all u2jvs.u<j jvs.all
Probability modeling  Direct Direct Indirect Direct

Table 16.4. Comparisons of the Advantages
and Disadvantages for Four Polytomous IRT Models

Models PC RS GR NR
Advantages
Total score is sufficient for ability estimates v v
Requiring (relatively) smaller sample size than 2PL models v Y
Accommodating tests with different response formats v v v
Providing the psychological distance of the measured construct v
Item discrimination is allowed to vary v v
Flexibility to all types of item responses v
Disadvantages
Equal discrimination restricts use in practice v v
Requiring (relatively) larger sample size than 1PL models 4 4
Not suitable for test items with different response formats v
Indirect specification of probability ‘ v

v

Less parsimonious to specific types of items responses

small sample sizes and short tests or scales, practitioners should consider
using nonparametric IRT models in which no prespecified functional
form, such as LogR, would be imposed to describe the relationship
between the item response and the ability score (see, €.g., Sijtsma &
Molenaar, 2002). ' ‘
The parametric logistic IRT framework described herein should be
increasingly utilized in day-to-day measurement research and data analy-
sis in the health, social, and behavioral sciences because of its versatility
and practicality in solving many problems in measurement and testing
such as measurement bias, item parameter drift, test score equating, and
computer adaptive testing (Embreston & Reises, 2000; Hambleton et al.,
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1991). These advantages of IRT models, especially when compared to
classical test theory, reside in the fundamental premise that IRT measure-
ment models generate item-independent person parameters and person-
independent item parameters. However, these advantages are not guar-
anteed by simply fitting an IRT model to the response data. Rather, they
are subject to the empirical assessment of parameter invariance of the
specified model (Hambleton et al., 1991; Rupp & Zumbo, 2004), a cor-
nerstone principle, yet often misunderstood element of IRT.

At this point, it is appropriate to say a few words about invariance In
IRT models and its implications for IRT practice in terms of item bias,
item drift, computer adaptive testing, and equating/linking of test ver-
sions or forms. Invariance is a population property dictating that the val-
ues of the parameters of a statistical model are identical across the
subpopulations or the test conditions for which the test items are
designed. Parameter invariance is often construed-in applications and the
applied literature as a magical yet mythical property; however, in fact, it is
a universal phenomenon of all model based regression-like analyses such
as least square regression, logistic regression, structural equation model-
ing, and IRT models (Breithaupt & Zumbo, 2002; Zimmerman & Zumbo,
9001; Zumbo & Rupp, 2004). Simply put, if a model is correctly specified
(i.e., the regression function is correct for the population), then the
regression parameters are invariant across the subpopulations or test con-
ditions. IRT parameter invariance, hence, cannot be explicitly tested
because it is a theoretical property in the population. At best, it may be
indirectly and empirically tested by the model-data fit and by examining
whether the parameters remain invariant across different calibration sam-
ples after the parameters are put ot the same metric. In other words, IRT
person parameter invariance and item parameter invariance hold if the
set of parameters calibrated on one data is the linear transformation of
those calibrated on the other (Rupp & Zumbo, 2003, 2004, in press). This
exercise of linear transformation is necessary because the metrics of the
IRT person and item parameters are often set arbitrarily from calibration
to calibration. Note that the latent predictor, 8, is constructed from the
joint distribution of the items in a scale and hence has no inherent mean
or variance (i.e., metric).

Therefore, the versatile IRT day-to-day applications will succeed only if
the model fits the data well and parameter invariance hold true. Follow-
ing the same premise, IRT based investigation of differential item func-
tioning, in essence, can be regarded as a statistical method for detecting
item bias through the examination of lack of invariance where item
parameters are variant across subpopulations such as gender or ethnic
groups. The same logic applies to the investigation of item parameter
drift where the initial parameters of items in an item pool show drift in a




266 A.D.WU and B. D. ZUMBO

later calibration after prolonged use. Also, because of the item-indepen-
dent person parameter property, a result of IRT parameter invariance,
computer adaptive testing is able to assign unbiased ability scores to
examinees regardless of what items in the item pool are administered to
the examinees. When used to equate test scores, IRT naturally overcomes
the problems of incomparability in scores of examinees taking different
tests. If an IRT model fits the data well, examinees’ ability scores are
made directly comparable by the item-independent invariance property.
The invariance property is of less importance in LogR, even though

the same premise still holds. This is because most researchers utilize
LogR primarily for the explanatory purpose of statisticaily testing
whether a set of predictors contributes to the explanation of the variation
in the outcome variable. Thus, one is more concerned about whether the
proportion of deviation (i.e., —2 log likelihood) explained away by the
chosen predictors is just a result of sampling capitalization, rather than
whether the specified model is correct in the population. In other words,
LogR modellers make fewer demands on the perfect model-data fit and
do not expect the model to explain away all the variation in the outcome
variable; a close enough approximation of the population model would

' suffice. In contrast, conventional IRT is utilized as a measurement model
- that adopts a “model fitting” perspective which dictates that a single
' = latent ability variable, theta, is the sole drive for people’s responses and
— should be sufficient to account for nearly all the variation in people’s
— responses and hence the model is expected to fit the data nearly perfectly
,.uih'/ v . . . . . .

; so that the beneficial applications of IRT parameter invariance will suc-
\1_ ceed. Currently, IRT modellers have moved ahead from the simple con-

ventional IRT models to more expanded models. For example, whether it
be binary or polytomous, multidimensiona! IRT models (i.e., more than
one single latent ability variables} have been developed to more aptly
describe examinees’ item responses (see, €.8., Ackerman, 1992; Embre-
ston & Reise, 2000, p. 82). Also latent class (i.e., discrete grouping vari-
able) IRT models have been developed where examinees are assigned to
latent classes that serve as the explanatory variable for the item responses.

Finally, we believe that the future of IRT, in many ways, will move from
the traditional “response fitting” measurement approach to a more
explanatory approach. For example, this could be done by framing the
IRT models under the generalized linear and nonlinear mixed effects
models, a model with random coefficients in which the fixed and/or ran-
dom effects enter the model nonlinearly (e.g., Rijmen, Tuerlinckx, de
Boeck, & Kuppens, 2003) where items are nested within the examinees
and one or more latent ability variables are treated as random effects, and
multiple examinee-level predictors can now be incorporated into the
extended model. Also the beneficial property of IRT parameter invari-

LT
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ance follows naturally under this generalized linear and nonlinear mixed
effects framework: the specified IRT model, within transformation, is the
same model (i.e., item parameters are fixed) at various levels of the ran-
dom variable, theta, when the model fits the data. In moving toward a
more “explanatory” modeling strategy, measurement and psychometrics
are becoming more than just a descriptive or normative process but
rather one that tells the researcher why and how item responses arise.
This is a relatively new avenue in IRT (De Boeck & Wilson, 2004; Lu,
Thomas, & Zumbo, 2005) and more generally to a new perspective on
validity and the practice of validation in measurement (Zumbo, 2005).
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NOTE

1. . Please note that exp(x) is the same function as ¢, where ¢ is about 2.718.
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