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Abstract This paper described the versatility of the multiple-indicator multilevel

(MIML) model in helping to resolve four common challenges in studying growth using

longitudinal data. These challenges are (1) how to deal with changes in measurement over

time and investigate temporal measurement invariance, (2) how to model residual

dependence due to the nested nature of longitudinal data, (3) how to model observed

trajectories that do not follow well-known functions commonly discussed in the method-

ology literature (e.g., a linear or quadratic curve), and (4) how to decide which predictors

are relatively more important in explaining individuals’ change over time. With an

example of psychological well-being from the Wisconsin Longitudinal Study, we illus-

trated how the four methodological challenges can be resolved using the 3-phase MIML

procedures and the Pratt’s importance measures.

Keywords Growth and change � Quality of life � Latent growth modeling �
Measurement invariance � Pratt’s measures � Psychological well-being �
Longitudinal studies

In the past several decades longitudinal designs for studying individuals’ growth and

change have slowly become popular in the area of psychological well-being (e.g., Mroczek

and Spiro 2005). However, statistical techniques such as hierarchical linear modelling

(HLM) and structural equation modelling (SEM), which have been developed to analyse

repeated measures and longitudinal data, are still underutilized for studying psychological

well-being. The advantage of using these techniques is that one can investigate individual

and average trends in data collected over days, weeks, months or years. For example, in a

15 year longitudinal study, Lucas et al. (2003) report that on average people adapted back

to their initial level of well-being after experiencing marital transitions; however, there

were individual differences, and many individuals showed no adaptation at all. In a later
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study, Lucas et al. (2004) investigated the effect of unemployment on individuals’ well-

being and found that after a strong reaction to unemployment, individuals’ life satisfaction

shifted back toward their former baseline level, yet on average the shift was not complete

(even after finding work again). Clearly, studies of the predictors and correlates of change

using HLM and SEM techniques are producing interesting and important findings. We

believe that a number of commonly-encountered methodological challenges have impeded

the uptake of these methods in day-to-day research.

In the context of an example from psychological well-being, this paper illustrates how

the multiple-indicator multilevel (MIML) growth model that incorporates Pratt’s

importance measures can help to resolve four commonly-encountered methodological

challenges with longitudinal data. These challenges are (1) how to deal with changes in

measurement over time and investigate temporal measurement invariance, (2) how to

model residual dependence due to the nested nature of longitudinal data, (3) how to

model observed trajectories that do not follow the well-known functions discussed in the

methodology literature (i.e., linear, quadratic, or cubic curves), and (4) how to decide

which predictors are relatively more important in explaining individuals’ change over

time.

This paper is organized as follows. First, we provided a detailed description of the

MIML model (Chan 1998; Muthén and Muthén 1998–2007) with a focus on describing its

versatility in solving data-analytical challenges resulting from common pitfalls in longi-

tudinal designs. Second, the procedures for modeling MIML were demonstrated with an

outcome measure of psychological well-being from the Wisconsin Longitudinal Study

(WLS, WLS Handbook 2007). This dataset provides real examples for many data-ana-

lytical challenges in modeling change. Next, we described and applied a very useful

method, Pratt’s importance measures, to answer an often-asked question: which variable is

relatively more important in predicting individuals’ change over time. Finally, strengths of

the MIML model were summarized, and the limitations were addressed in the Discussion

section.

1 The MIML Model

The assessment of individual change requires, by definition, repeated measurements of

the construct of interest across multiple time points. From a statistical point of view,

these repeated measures are, by design, nested within individuals. Over the past several

decades, HLM techniques have become an increasingly popular method for modeling

nested data (Goldstein 1995; Hox 2002; Raudenbush and Bryk 2002; Singer and Willett

2003). In a conventional HLM analysis of change, the level-1 analysis directly models

the intra-individual’s change in the observed outcome over time, and the level-2 analysis

models the inter-individuals’ differences in their growth. Unlike HLM, the MIML model

studies the growth curve of the ‘‘latent variable’’ created from multiple observed indi-

cators via SEM techniques, entailing an extra level (a measurement model) at the

foundation of the model. In this section, we describe the structure of the MIML model

with an eye to its versatility.

Conceptually, the structure of the MIML model consists of three levels. Level-1, the

measurement model, defines the scaling relationship between the latent variable, of which

the change over time is studied, and the multiple observed indicators. Level-2, the latent
growth model, captures the intra-individual change in the latent variables over time. Level-

3, the inter-individual model, predicts the inter-individual differences in their growth.
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Using the notation and approaches developed by Bengt Muthén and Linda Muthén, and

implemented in the Mplus software (Muthén and Muthén 1998–2007), Table 1 provides

the mathematical equations for the MIML model and Fig. 1 depicts the equations

graphically.

1.1 Level-1: The Measurement Model

The addition of a measurement model to a traditional multilevel growth model brings

several advantages (see Eq. 1; Fig. 1). First, it simultaneously incorporates multiple

indicators into one model, which, as a result, allows inferences to be made about the latent

variable rather than the observed variables. The latent outcome variables, FT1, FT2, FT3,

and FT4 are depicted as ovals in Fig. 1. A latent variable is a mathematically created

variable that is constructed by accounting for the interrelationships among the observed

indicators. The observed indicators define the operational meaning of the latent variable.

The measurement model allows one to partition random variance and systematic mea-

surement variance (i.e., a second dimension which is unintentionally measured) from the

true score variance. In other words, incorporating multiple indicators enables researchers to

model growth and change in the true scores by accounting for the random and systematic

measurement errors.

Furthermore, embedding a measurement model allows for the investigation and cali-

bration of measurement invariance over time. The issue of temporal measurement
invariance is often neglected by applied researchers who carry out longitudinal studies.

Investigation of temporal measurement invariance examines whether the metric of the

outcome variable, measured at multiple time points on the same group of individuals,

remains the same. The purpose is to examine whether the scores of the outcome measure

are confounded by a temporal change in the scale of measurement. In the MIML model, the

Table 1 The equations for the
3-level MIML model

Level-1 measurement model

Yijt ¼ sjt þ kjtFit þ rijt (1)

i = individuals, j = observed indicators, t = time points
Yijt = observed response variables/indicators
sjt = intercept of indicators
kjt = factor loadings
Fit = latent factor score across time points
rijt = residual for Yijt

Level-2 latent growth model (intra-individual model)

Fit ¼ g0i þ btg1i þ eit (2)

g0i = intercept growth factor
g1i = slope growth factor
bt = time score
eit = residual for Fit

Level-3 growth prediction model (inter-individual model)

g0i ¼ a0 þ c0Xi þ 10i (3)

g1i ¼ a1 þ c1Xi þ 11i (4)

Xi = time-invariant predictors
c0 and c1 are regression coefficient of predictors
101 = residual for g0i

102 = residual for g0i
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outcome measures of interest are the latent variables. Thus, measurement invariance is

investigated at the latent variable level through its measurement model. Establishing

temporal measurement invariance is the prerequisite for analyzing change in the latent

growth curve at level-2. Temporal measurement invariance provides evidence that the

construct is measured on the same metric over time; hence cross-time comparison in the

latent score is warranted so that the results and interpretations are not, at least, biased by

lack of measurement invariance.

To date, measurement invariance is widely studied for cross-sectional data in the

framework of multi-group confirmatory factor analysis (MG-CFA). The MG-CFA tech-

nique is, however, hardly used for testing measurement invariance across temporal groups

prior to a growth study being carried out. It is worth noting that, even for cross-sectional

MG-CFA, there is not yet full consensus on the necessary conditions for ensuring mea-

surement invariance (see reviews in Cheung and Rensvold 2002; Vandenberg and Lance

2000; Wu et al. 2007). Recent developments, however, have come to an agreement that

investigation of measurement invariance should, at the very least, (1) be based on the mean

and covariance structure (MACS) of the observed indicators (Little 1997; Meredith 1993;

Wu et al. 2007) and (2) meet the condition of strong invariance, i.e., cross-group equality

of the indicator intercepts and the factor loadings (e.g., Brown 2006; Jöreskog and Sörbom

1989; Little 1997; Meredith 1993; Wu et al. 2007).

It should be noted that Meredith (1993) and Wu et al. (2007) argued that strict

invariance is a necessary condition for examining measurement invariance, which requires,

in addition to the indicator intercepts and factor loadings, equality of the residual variances

across groups. However, a longitudinal design, in which the same subject is measured at

multiple time points, usually leads to unequal residual variances across time. Brown (2006)

pointed out that the fan-spread shape of indicator variances across time results in failure in

testing equal residual variances. Thus, strict invariance appears rather unrealistic for

establishing measurement invariance in the case of longitudinal studies. Hence, the present

study omitted the discussion and investigation of the equality of the residual variances.

Fig. 1 A conceptual path diagram for the 3-level MIML model. Note Each of the latent outcome variables
FT1 to FT4 at each time point was measured by six observed variables. e11 to e64 are residuals for the six
indicators at four time points. Some correlations among the residuals were omitted for graphical simplicity.
The * sign indicates that the loading for the slope growth factor were freely estimated (i.e., free time scores).
I and S are intercept and slope growth factors. X1–X7 are predictors for I and S
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Testing equality of the indicator intercepts and factor loadings across longitudinal

samples has somewhat different interpretations from those of cross-sectional samples. An

indicator intercept is the value of an estimated observed variable when the latent variable is

zero; it is the scaling constant (i.e., location) of the latent variable for the observed

indicator. In a cross-sectional MG-CFA, testing the equality of the indicator intercepts is an

investigation of whether the scaling constant remains the same for the observed variables

for all groups. In a longitudinal study, however, testing equality of the indicator intercepts

is an investigation of whether the scaling constant remains the same for the observed

indicators across all time points.

In a cross-sectional MG-CFA, a loading represents the expected change in an observed

variable per unit change in the latent variable. Testing of equality of the factor loadings is

an investigation of whether the measurement unit (i.e., scale) of the latent variable remains

the same for the observed indicators for all groups (see Wu et al. (2007) for a detailed

explanation). In a longitudinal study, however, testing equality of the factor loadings is an

investigation of whether the scaling unit of the latent variable remains the same for the

observed variables across all time points.

Changing the observed indicators over time is one of the apparent and frequent sources

of lack of measurement invariance. Researchers often modify their instrument by changing

the contents and/or the response format. An example of such practice might be using a

4-point Likert response format at time one and a 6-point response format at time two, in

addition to dropping or adding items to the questionnaire. Therefore, a growth study based

on the observed total score of the modified indicators would be meaningless because cross-

time total scores are clearly on different metrics (i.e., the range of the total score would be

different across time). Fortunately, embedding a measurement model may resolve this

problem through modeling change in the latent variable. Given a good model-data fit,

temporal measurement invariance may still hold for the latent variable if the components

for scaling the latent variable, the intercepts and loadings, are constrained to be equal. To

achieve this, a transformation of the indicator scores is necessary prior to the invariance

constraint. This technique will be explained in Sect. 2.

Another advantage of using the MIML model in a growth study is its capacity for

dealing with residual dependence. In a longitudinal study, the design of repeated measures

of the same individuals may lead to some residuals being dependent across temporal

groups. The residual is that part of the observed score that is not accounted for by a

statistical model (i.e., the difference between the observed score and the model predicted

score). For the MIML measurement model, the residual of an observed indicator at a

specific time point, rijtin Eq. 1, is the difference between the observed score and the

predicted factor score for that specific time point, i.e., rijt ¼ Yijt � ðsjt þ kjtFitÞ.
Temporal residual dependence can occur in multiple ways. For example, it may occur

among the same observed indicators measuring the same latent variable across time. To be

specific, suppose the first indicator in Fig. 1 measures autonomy (one of the six observed

indicators for psychological well-being) and its score was observed at four time points

denoted as Y11, Y12, Y13, and Y14. Their corresponding residuals, denoted as e11, e12, e13,

and e14, are very likely to correlate with one another even after controlling for their

corresponding latent scores of psychological wellbeing (i.e., FT1, FT2, FT3, and FT4,

respectively). Researchers should allow for the possibility of the residual dependence and

model them appropriately to avoid model misspecification. Embedding a measurement

model allows the researchers to specify various patterns of residual covariances according

to their theory or specific research design.
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1.2 Level-2: The Latent Growth Model (Intra-Individual Model)

The latent variables that define individuals’ change over time are referred to as the

intercept growth factor and the slope growth factor1 (Muthén and Muthén 1998–2007).

The intercept growth factor (denoted as g0i in Eq. 2 and depicted as the ‘‘letter I in an oval’’

in Fig. 1) represents the estimated status of individuals’ growth curve at the time point

when the time score is zero (i.e., bt equals zero in Eq. 2), which is usually specified to be at

the first time point (time when the data were first collected) to indicate the estimated initial

status of the latent outcome variable. The loadings (i.e., weights) of the intercept growth

factor for each of the latent outcome variables (FT1–FT4) are fixed to be one to indicate that

the prediction of FT1–FT4 would begin with the constant of ‘‘1 multiplied by the score of

the intercept growth factor’’, which will return to the score of intercept growth factor itself.

The variance of the intercept growth factor indicates how diverse individuals are in their

estimated initial value of the latent outcome variables. A small variance indicates that

individuals are homogeneous in their initial status. Likewise, the mean of the intercept

growth factor is the average of the latent outcome variable across individuals when the

time score is zero.

When a linear curve is modeled, the slope growth factor (denoted as g1i in Eq. 2 and

depicted as the ‘‘letter S in an oval’’ in Fig. 1) represents the increase in the latent outcome

variable for a time score increase of one unit (i.e., the constant growth rate of each

individual over all time points). The mean of the linear slope growth factor indicates the

average growth rate over individuals. The variance of the slope growth factor shows how

diverse the individuals are in terms of their growth rate. The covariance between the

intercept and growth factors indicates how the initial status and the growth rate are related.

For example, a negative covariance indicates that the higher the individual’s initial status,

the slower the individual’s growth rate is.

Time scores denoted as bt in Eq. 2 (i.e., loadings for the slope growth factor), in

essence, are the weights assigned to the slope growth factor in order to predict the latent

outcome variable at a specific time point. They are parameters in the MIML model and

can either be fixed or freely estimated to determine the shape of the growth curve. Note

that a minimum of four time points is recommended for using free time score to capture

the nonlinear growth,2 and two of the time scores need to be fixed for the purpose of

model identification; typically, the scores are set to be 0 and 1 for the first two time

points (b1 = 0 and b2 = 1). Fixing the first two time scores to 0 and 1 specifies the time

elapsed between the first and second time points to be the unit time interval for

interpretation.

For example, time scores can be fixed to 0, 1, 2, and 3 to specify a linear growth curve

for data collected every 6 months at four time points. Time scores of 0 and 1 are fixed to

specify that the time unit of interpretation is 6-months, and aid in model identification.

1 Other growth factors can also be modeled. For example, with sufficient time points, a higher order
polynomial curve (such as a quadratic growth factor) can be incorporated to capture the non-linear trend in
the observed trajectories.
2 A minimum of four time points is recommended for growth models for two reasons. It is inflexible to
make the model identify enough parameters in the growth model with less than four time points. Also, data
with four time points give more power. See Muthén (1999) at http://www.statmodel.com/discussion/
messages/14/20.html#POST16727.
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Time scores of 2 and 3 are fixed to indicate a constant change across time points with equal

time intervals in between. Following the same logic, time scores can be fixed to 0, 1, 2, and

6 to specify a linear growth curve for data collected at four time points: at the inception, 6,

12, and 36th months. Note that the choice of unit of time does not always have to occur

between the first two time points. The choice should be guided by the researcher’s sub-

stantive interest, longitudinal research design, or interpretational convenience.

Studying growth via a SEM technique allows a researcher to better capture the growth

curve of the observed data. That is, freeing the time scores allows the model to better trace

the data curve rather than imposing a pre-specified curve that may turn out to be poor-

fitting when the observed data show no clear patterns or follow no familiar curves. As

aforementioned, two time scores need to be fixed to 0 and 1 to set the unit of time. As an

example, let us consider data collected at four time points with 6-month equal intervals. If

the first two time scores are fixed to 0 and 1 and the last two are freely estimated to be 3.5

and 0.2, they can be interpreted as follows; if the amount of change during the first

6 months was scaled to be 1, the expected change at the third time point would be 3.5 and

the expected change at the fourth time point would be 0.5. In other words, compared to the

first interval of growth rate of 1, we expect a growth rate 2.5 times faster than the first

interval during the second interval (3.5 - 1 = 2.5), but an even faster decrease in the

growth rate of -3.3 during the third interval (0.2 - 3.5 = -3.3). These two free time

scores reveal that the growth curve may not fit well to a particular known function such as

a linear or quadratic; it reached a high peak at the third time point but showed a sharp

decline at the fourth time point.

It is very important not to interpret the mean of the slope growth factor as a constant rate

of change over all time points or over the study period, but as the rate of change for a time

score change of one. Namely, the slope growth factor mean is the change in the latent

outcome variable for a one unit change in the time score. So, if the unit time interval is

scaled to occur between the first and second time points (6 months in our example) by

fixing the first two time scores to 0 and 1 and freeing the last two, the growth factor mean is

the change in the outcome variable for the first 6 months. Thus, the growth factor mean is

the estimated mean difference between the latent outcome variables at the first and second

time points. If the unit time interval is scaled to occur between the first and last time points

(24 months in our example) by fixing the first and last time scores to 0 and 1 and freeing

the middle two time scores, the growth factor mean is the change in the outcome variable

for the 24 months.

Along these lines, the growth factor mean can be used to predict the means of the latent

outcome variables at different time points. If the time score for the third time point is

estimated to be 0.5, and the growth factor mean to be 1.8 while fixing the first two time

scores to 0 and 1, using Eq. 2, Fit ¼ g0i þ btg1i þ eit, the predicted latent outcome mean at

the third time point would be 0.5 9 1.8 = 0.9 (assuming that the estimated mean of the

intercept growth factor g0i is zero).

1.3 Level-3: The Growth Prediction Model (Inter-Individual Model)

The growth prediction model is formulated by including time varying and/or time-invariant

predictors into the model to examine the relationship between the predictors and the

intercept growth factor, as well as between the predictors and the slope growth factor (see

Eqs. 3 and 4 and Fig. 1). Time-invariant predictors depict individuals’ static status (e.g.,

gender) whereas time-varying predictors are variables of which the values vary across time
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hence may have different prediction on the growth factors (e.g., health condition). In

addition, the SEM approach allows the flexibility of incorporating both observed and latent

predictors. For instance, a researcher may be interested in observed predictors such as

gender and age as well as latent predictors, such as personality traits that are indicated by

five subscales (e.g., the Big-five personality approach).

2 An Illustration of the 3-Phase MIML Application to Psychological
Well-Being

In this section, we will use an example of psychological well-being to illustrate the

application of the MIML technique in analyzing longitudinal data. First, we will briefly

describe the design of the Wisconsin Longitudinal Study (WLS). Next, we will high-

light, with the WLS data as an example, data analytical challenges that are often

encountered when analyzing longitudinal data. Lastly, along the way to illustrating the

3-phase MIML modeling strategy, we will provide solutions for each methodological

challenge.

2.1 Wisconsin Longitudinal Study (WLS) Design

The Wisconsin Longitudinal Study (WLS) sample includes individuals who graduated

from Wisconsin high schools in 1957. This sample is broadly representative of white, non-

Hispanic American men and women who have completed at least a high school education.

The four waves of psychological well-being data used in this study were collected in the

following ways. In 1992, a telephone interview started the data collection and was fol-

lowed by a mail survey 6 months later. The same data collection procedures were repeated

in 2002 leading to four waves of data collection. The sample sizes for both the 1992

telephone interview and mail survey are around 8,500 respondents. The 2002 telephone

survey only interviewed a subsample of 545 respondents. The sample size for the 2002

mail survey is 6,297 respondents. Most respondents were around 52 or 53 years old during

the first telephone interview in 1992.

The latent outcome variable, psychological well-being was indicated by the six adapted

subscales of Ryff’s Scales of Psychological Well-Being (RPWB): (1) autonomy, (2)

environmental mastery, (3) personal growth, (4) positive relations with others, (5) purpose

in life, and (6) self-acceptance (Ryff 1989; Ryff and Keyes 1995). The original RPWB has

a total of 120 items, with 20 items for each subscale. The WLS study adapted the RPWB

such that the number of items and response scale points varied across data collections.

Table 2 provides a description of the changes in the scales used across the four data

collections. These scaling changes in the number of items and the response format have

Table 2 Description of changes in the RPWB across four waves of data collection

1992 phone 1992 mail 2002 phone 2002 mail

Number of items per subscale 2 7 3 5 or 6

Total number of items across the six subscales 12 42 18 36

Number of scale points per item 7 6 6 6

Subscale total range 0–12 0–35 0–15 0–30

Note: RPWB Ryff’s scales of psychological well-being
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raised some challenges in using the scores to study change. The last row of Table 2 shows

that the amount of psychological well-being was measured on different metrics at each

time point, making the comparison impossible without further statistical adjustment.

The predictors for the growth factors included the respondent’s sex, their overall

high school rank, and their scores on the Big Five personality traits (McCrae and John

1992) of extraversion (EXTRAV), agreeableness (AGREEABL), conscientiousness

(CONSCO), neuroticism (NEURO), and openness (OPEN). For the present study, we

used each personality trait as individual predictors for the growth factors. If preferred, a

latent predictor variable of ‘‘personality’’ can be created and used as a single predictor

instead.

In this section, we will describe the 3-phase MIML modeling procedures. The first

phase includes the level-1 measurement model only. The second phase includes level-1

and level-2 models, i.e., adding the latent growth model to the measurement model. The

third phase includes all three levels of models, i.e., adding the growth prediction model

to the level-2 model. Figure 1 presents the path diagram of the 3-level MIML model.

Note that the commonly used Chi-squared ratio test was not chosen for examining model

fit because this index is affected by large sample size, such as that in the WLS, and

easily becomes statistically significant when even trivial misfit occurs (Brannick 1995;

Brown 2006; Cheung and Rensvold 2002; Kelloway 1995; Wu et al. 2007). Another

disadvantage of the Chi-squared test in comparing model fit is that it always decreases

when more parameters are added. Therefore, there is a possibility to choose a model with

more parameters that are really unnecessary. Instead, we used the comparative fit index

(CFI), root mean square error of approximation (RMSEA), and standardized root mean

residual (SRMR) (cf., Hancock and Lawrence 2005; Wu et al. 2007). Although the

optimal cut-offs for good fit depend on a variety of factors such as model complexity

(Browne and Cudeck 1992; Hu and Bentler 1999; Marsh et al. 2004), in broad strokes,

RMSEA B 0.08, SRMR B 0.05, and CFI C 0.90 are considered as good fit. Mplus 4.0

(Muthén and Muthén 1998–2007) was used for the data analyses. The appendix provides

the Mplus syntax for the final model with all three levels—Mplus code for the level 1

and level 2 models can be created by selecting the appropriate code from the three-level

model.

2.2 Phase One: Level-1 Model Only

As shown in Fig. 1, Y represents the observed indicators, and FT1 to F T4 are the latent

variables representing psychological well-being at four time points. Psychological well-

being at each time point was measured by six indicators (i.e., the six subscales of

RPWB). In our example, the loadings of the first observed variable were fixed to 1 to

set the scale of the latent variable (quantifying the latent variable) and, as explained

above, the remaining five were constrained to be equal across the four time points. The

intercepts for each indicator (sijt) were all constrained to be equal over four time points.

Two of the methodological challenges and their solutions will be addressed in this

phase.

2.2.1 Solution to Scaling Change

The problem of scaling change can be solved by measurement invariance constraints based

on the mean and covariance structure of the Z scores. In the WLS, the six indicators were

modified across waves of data collection. Items were dropped from or added to the
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subscales from time to time (see the ‘Number of items per subscale’ of Table 2). The

number of scale points for the Likert response was also modified (see Table 2). As a result,

the ranges of the six subscale totals vary greatly across time points (i.e., 0–12 to 0–35, see

Table 2). In a traditional growth study, the subscales scores are summed up to a total score

representing individuals’ amount of psychological well-being. The large difference in the

range of subscales makes the cross-time comparison of the total scores impossible. It is not

surprising if researchers find a poor model fit when examining strong invariance based on

these observed scores with large range differences.

A normative transformation (i.e., standardization to Z scores)3 is one appealing way to

solve this problem when used with a latent growth model. The normative transformation

converts the total score of each subscale into a Z score with a mean of zero and standard

deviation of one. Z scores make the subscale totals over time ‘‘appear’’ to be on the same

metric (-3 to 3) and seemingly comparable over time. However, this solution is not

appropriate for studying observed trajectories because standardization may change the

shape of the observed trajectories of the original raw scores (Willett et al. 1998). This is

because, as mentioned earlier, unequal cross-time variances, hence SD, of the outcome

variable is very common. Standardizing the subscale totals by dividing unequal SDs may

distort the relative ranking of the cross-time raw subtotals, leading to a change in the

shape of the observed trajectories. Although standardization transforms the cross-time

raw subtotals into a ‘‘seemingly common’’ Z-scale and makes the comparison of the

grand total ‘‘appear’’ feasible, it may greatly distort the temporal pattern of the observed

trajectories.

Nonetheless, the problem of standardization in distorting observed trajectories will not

occur if the study of the growth trajectory is at the latent variable level. This is because

standardizing does not alter the overall distribution of the raw subscale totals. That is, the

overall distributions of the raw subscale totals and of the Z scores will remain the same.

For a latent growth model like the MIML model, the actual data for the measurement

model is the mean and covariance structure (i.e., MACS) among the indicators (i.e.,

subscale totals) rather than the raw scores per se. Despite the fact that the means and

covariances may change in magnitude, the structure will remain identical whether it was

calculated based on the raw scores or the Z scores. Namely, individuals’ scores on the

latent outcome variable created based on the mean and covariance matrix of the Z scores

would remain consistent to those of the raw scores (Cronbach 1990, p. 121; Gorsuch 1983,

p. 299).

The use of the variance and covariance structure of the Z scores makes the investigation

of strong invariance sensible without the price of distorting the observed trajectory. Since

the observed indicators are now on the same metric of Z scores across time, testing the

equality of the intercepts and loadings is now, at least, possible in terms of the face values

of the observed metric.

3 Readers should not confuse ‘‘normative’’ transformation with ‘‘normalized’’ transformation. Normative
transformation is a linear transformation; it standardizes the raw scores into Z scores by subtracting the raw
score from the mean then dividing by the standard deviation. Normalized transformation, on the other hand,
stretches a distribution to make it nearly normal and spreads the data points in both tails of distribution,
which is usually a non-linear transformation (Gorsuch 1983, p. 299). The normalized scores will affect
factor analysis because the overall distribution of transformed scores will be different from that of the
original raw scores. Therefore, normalized transformation is not recommended as a solution to the problem
of changes in the observed score scaling.
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2.2.2 Solution to Dependent Residuals

The problem of residual dependence can be solved by specifying correlated residuals. The

SEM nature of the MIML model allows researchers to specify the residual relationships

according to the data collection design and the substantive theory. In the present study, we

specified the residuals of the same subscales to be correlated across the four time points.

For example, the residual among the first indicators should all be correlated. That is, e11,

e12, e13, and e11 are mutually correlated, so are the four residuals among the rest of the five

indicators. Figure 1 demonstrates these correlated relationships at the level-1 model. The

double-headed arrows between residuals of the observed Y variables indicate the residual

correlations. Note that in Fig. 1, for the simplicity of illustration, we only graphed cor-

relations between the residual of the first indicator of the first time point with those of the

other three time points.

The fit indices of the level-1 measurement model (with measurement invariance con-

straint and residual covariances as we specified) revealed that psychological well-being

was aptly measured by the six indicator subscales and was measured invariantly across

time, CFI = 0.959, RMSEA = 0.042, SRMR = 0.036. The establishment of measurement

invariance qualifies the score comparison across the latent outcome variable at level-2 in

the next phase. Note that the residual correlations as we specified were all statistically

significant with sizes ranging from 0.278 to 0.832. If the residual dependence had not been

modeled, the model would have fitted the data poorly with CFI = 0.869, RMSEA = 0.07,

SRMR = 0.047 and been disqualified for phase two.

2.3 Phase Two: Level-1 and -2 Model

Two growth factors, the intercept and growth factors as represented by I and S in an oval,

respectively in Fig. 1, are used to model the growth curve of the latent variable of psy-

chological well-being. The growth factors are treated as latent variables/factors. For the

present data, results show that phase two model fit the data well, CFI = 0.959,

RMSEA = 0.042, SRMR = 0.037. However, the fit indices were almost identical to those

of phase-one model indicating that adding the growth factors to model the change in

psychological well-being did not help explain the data pattern much.

2.3.1 Solution to Observed Trajectories Failing to Follow a Known Function

This problem can be solved by using free time scores. As described earlier, the loadings of

the slope growth factor, which are also called time scores, are important parameters of a

latent growth model because they function to capture the shape of the growth curve. In the

MIML model, the free time scores are recommended if they better capture the observed

growth trajectories and yield better fit to the data. For the WLS data, we used the pro-

portion scores to give us a rough guide for the shape of the observed growth curve (but not

the actual ‘‘amount’’ of change across time, see Fig. 2). The proportion scores were cal-

culated by taking the ratio of individuals’ total scores at one time point to the maximum

score of that time point. As we explained earlier, due to scaling change, it would be

nonsensical to graph the mean curve based on the observed total scores, so would the Z

scores that may distort the shape of the original curve. Figure 2 shows that the growth

curve declines to the second time point, rises to the third time point, and declines again to

the last time point.
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It should be noted that the proportion score is an approximate alternative for sketching

the unknown observed trajectories as if they had been measured on the same metric across

time. First, when the proportion scores are compared among the individuals at one specific

time point, the relative ranking remains the same. Second, when the proportion scores are

compared across time points, they can capture the trend of the change for a specific

individual given that the difficulty of endorsing or getting the items right remains similar

across time. For example, if Johnny scores 7 points on a mathematics test with a maximum

of 10 at grade one and 17 points on a test with a maximum of 20 at grade two and the two

tests are of the same difficulty level with regard to his age, the increase of the proportion

score from 0.7 of grade one to 0.85 of grade two could be an sufficient indication of

Johnny’s progress. Such cross-time comparison is meaningless if the age-appropriate

difficulty has changed because it may distort the unknown observed trajectories.

Although the proportion score growth curve in Fig. 2 may appear somewhat volatile due

to the graphical scaling on the Y axis, the increase/decrease is, in fact, pretty trivial

(difference less than 0.05 in proportion). This indicates that individuals’ psychological

well-being remained considerably stable during the study course. The slight drops from the

first to the second and from the third to the fourth time point may simply be a measurement

artefact- a reflection of the drop in the social desirability from the telephone survey to the

mail survey. In real research settings the small change may not be of substantive interest;

however, for demonstration purposes, we used free time scores to model the somewhat

zigzag trajectory. Given the observed pattern, we fixed the first two time scores to be 0 and

-1 and freed the last two to be estimated. In particular, we found that setting the second

time score to be -1 helped the estimation to converge. A fixed value of -1 (instead of 1)

captured the drop at the second time point as shown in the proportion score growth curve in

Fig. 2. Specifying the sign helped the model to converge. This goes to show that free time

scores should not be used entirely thoughtlessly. Also, to help the estimation converge,

researchers can specify the starting values for the free time score in terms of the size and

sign based on their theory and/or the observed growth curve.

Table 3 shows the selected Mplus output for the phase two model. Note that all the

loadings of the intercept growth factor were fixed at 1 and the first two loadings of the

slope growth factor (i.e., the first two time scores) were fixed at 0 and -1. The following

describes the freely estimated parameters of the level-2 latent growth model.

Fig. 2 The observed mean growth trajectory of psychological well-being. Note The observed trajectory was
graphed based on the mean proportion score for four time points
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First, the mean of the intercept growth factor (on the metric of -3 to 3) was estimated to

be zero showing that the average score of psychological well-being at the outset is zero.

This result makes sense because the indicators were transformed to Z-scores, which were

all, by definition, centered at zero. Second, the mean of the slope growth factor was

estimated to be close to zero, too, indicating little to no change during the unit time interval

of the first 6 months. Third, the variances of the intercept growth factor and the slope

growth factor were estimated to be 0.033 and 0.044, respectively. Despite being very small,

they are statistically significant suggesting that individuals are diverse in their initial status

and the first 6-month change. Fourth, the covariance of the intercept and slope growth

factors was estimated to be -0.036 (i.e., correlation of -0.927), indicating that the initial

status is highly negatively correlated with the first 6-month change in psychological well-

being. Fifth, the last two loadings of the slope growth factor (time scores) were estimated

to be 0.773, and -0.581, which correspond to the zigzag growth pattern shown in the

observed mean growth trajectory. Finally, the residuals for the four well-being latent

Table 3 Selected Mplus output
for level-2 MIML model

Estimates SE Est./SE

I

F1 1.000 0.000 0.000

F2 1.000 0.000 0.000

F3 1.000 0.000 0.000

F4 1.000 0.000 0.000

S

F1 0.000 0.000 0.000

F2 -1.000 0.000 0.000

F3 0.773 0.056 13.739

F4 -0.581 0.046 -12.553

Intercept

F1 0.000 0.000 0.000

F2 0.000 0.000 0.000

F3 0.000 0.000 0.000

F4 0.000 0.000 0.000

Means

I 0.000 0.000 0.000

S 0.000 0.003 0.023

Variances

I 0.033 0.002 17.599

S 0.044 0.004 10.066

S with I -0.036 0.002 -23.384

Residual variances

F1 0.117 0.003 38.165

F2 0.086 0.006 15.255

F3 0.005 0.001 5.643

F4 0.119 0.004 28.769

Estimated means for the latent variables

F1 0.000; F2 0.000; F3 0.000; F4 0.000; I 0.000; S 0.000
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factors Ft1–Ft4, (eitin Eq. 2, not shown in Fig. 1), were all significant indicating that over

and above the intercept and growth factors, other factors are in the play and needed for

explaining individuals’ psychological well-being over time. These results correspond to the

fit indices showing no to little improvement after adding the growth factors.

For the present data, both the estimated means of the intercept growth factor and slope

growth factor are extremely close to zero (values smaller than 0.001), and were unable to

be shown in the Mplus output that only displayed up to the third decimal). This suggests

that although the growth curve of psychological well-being appeared somewhat nonlinear

on a graph, it remained very stable showing no considerable change. Our finding is in

accordance with the notion that well-being is relatively stable as postulated, for example, in

the adaptation model (cf. Frederick and Loewenstein 1999).

2.4 Phase Three: Level-1, -2 and -3 Model

In the third phase of MIML, we added standardized predictors for the growth factors.

Hence, the MIML is a 3-level model with level-1 measurement model, level-2 latent

growth model, and level-3 growth prediction model. At level-3, the MIML model inves-

tigates the effects of individuals’ background variables on individuals’ growth curve. This

is shown by the arrows going from X1–X7 to I and S, where Xs are the time-invariant

predictors measured before or at the first time point. The inter-individual predictors in the

present study are sex, overall high school rank (HSRANK), and the Big Five Personality

Traits (McCrae and John 1992). These time-invariant predictors vary across individuals,

but not across time.

All of the fixed and free estimated parameters are the same as described in the second

phase except for the newly added regression coefficients for the predictors. The phase three

model still fit the data well, although slightly less satisfactory than the phase two model,

with CFI = 0.912, RMSEA = 0.05, and SRMR = 0.039. Table 4 reports the selected

Mplus output. The results show that except for agreeableness, all the other predictors were

statistically significant, indicating that they played a role in explaining the variation in

individuals’ intercept growth factor (i.e., the initial status) and slope growth factor (i.e., the

unit metric in the outcome variable for interpretation; change in the outcome per one unit

change in time score; the first 6-month change). Except for neuroticism that had a negative

effect on the intercept growth factor, all others had positive effects. The results for pre-

dicting the slope growth factor were reversed; except for neuroticism that had a positive

effect, all others had negative effects.

2.4.1 Solution to Problem of Ordering the Relative Importance of the Predictors

It is often of theoretical and practical interest to learn which predictor in a regression model

is relatively more important. Pratt’s relative importance measures, d, were developed to

order the relative importance of the explanatory variables (Thomas et al. 1998). The

equation for calculating the d is given as (b 9 r)/R2, where b denotes the standardized

partial regression coefficient, r is the simple correlation between the outcome variable and

predictors, and R2 is the variance of outcome variables explained by all the predictors. In

order to obtain the b weights, the Mplus output command ‘‘STANDARDIZED’’ has to be

used. Pearson correlation was obtained by correlating the intercept and growth factors with
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Table 4 Selected Mplus output
for level-3 MIML model

Estimates SE Est./SE

I

F2 1.000 0.000 0.000

F1 1.000 0.000 0.000

F3 1.000 0.000 0.000

F4 1.000 0.000 0.000

S

F2 -1.000 0.000 0.000

F1 0.000 0.000 0.000

F3 0.647 0.034 18.993

F4 -0.440 0.024 -18.457

I ON

SEX 0.021 0.004 5.563

HSRANK 0.000 0.000 5.698

EXTRAV 0.008 0.000 17.345

AGREEABL -0.001 0.000 -1.793

CONSCO 0.005 0.001 9.713

NEURO -0.022 0.001 -30.464

OPEN 0.003 0.000 6.628

S ON

SEX -0.036 0.005 -6.873

HSRANK 0.000 0.000 -3.582

EXTRAV -0.011 0.001 -16.810

AGREEABL 0.001 0.001 1.781

CONSCO -0.008 0.001 -10.927

NEURO 0.031 0.001 33.013

OPEN -0.004 0.001 -6.018

S with I -0.022 0.001 -24.641

Intercepts

F1 0.000 0.000 0.000

F2 0.000 0.000 0.000

F3 0.000 0.000 0.000

F4 0.000 0.000 0.000

I 0.000 0.000 0.000

S 0.096 0.009 10.678

Residual variances

F1 0.120 0.003 39.433

F2 0.065 0.003 19.382

F3 0.004 0.001 5.819

F4 0.131 0.003 39.178

I 0.019 0.001 18.953

S 0.035 0.002 14.976

Estimated means for the latent variables

F1 0.0687; F2 0.0684; F3 0.0686 F4 0.0684 I 0.0685; S 0.0001
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predictors using the ‘‘WITH’’ command.4 R-square values are the proportion of variance of

the intercept and slope growth factors that were explained by predictors, they are auto-

matically outputted in Mplus.

Using the criteria described by Thomas et al. (1998), variables with a Pratt’s measure

less than 1/(2p), where p is the number of predictors, were regarded as unimportant.

Table 5 reports the Pratt’s measures for the two growth factors, respectively. The results

show that SEX and HSRANK failed to play an important role in prediction individual’s

growth variation in psychological well-being, whereas NEURO, EXTRAV, CONSCO,

AGREEABL and OPEN were important variables for both intercept and slope growth

factors. Among the important variables, neuroticism is the most important predictor for

both growth factors. The results echoed previous findings that personality variables like

neuroticism and extraversion are strong predictors for psychological well-being (e.g.,

Bostic and Ptacek 2001; DeNeve and Cooper 1998).

3 Closing Remarks

Elaborated from Golembiewski et al.’s study (1976), Chan (1998) pointed out there are

three types of change that may occur in longitudinal studies—alpha, beta, and gamma
change. Alpha change refers to the true score change in a construct given the same

construct is measured on the same metric over time. This is an ideal condition for a

meaningful study of quantitative change in a construct. Beta change refers to the change in

the measurement metric though the same construct is measured over time. This is the

Table 5 Ordering the importance of predictors using Pratt’s measures

Intercept growth factor Slope growth factor

b r d Order b r d Order

SEX 0.018 0.039 0.0015 – -0.033 -0.049 0.0032 –

HSRANK 0.061 0.142 0.0181 – -0.031 -0.117 0.0072 –

EXTRAV 0.258 0.496 0.2664 2 -0.255 -0.503 0.2546 3

AGREEABL 0.121 0.403 0.1016 5 -0.127 -0.422 0.1063 5

CONSCO 0.233 0.491 0.2381 3 -0.255 -0.515 0.2606 2

NEURO -0.320 -0.486 0.3239 1 0.331 0.499 0.3277 1

OPEN 0.147 0.415 0.1270 4 -0.144 -0.415 0.1186 4

R2 = 0.480 R2 = 0.504

Note: b denotes the standardized beta-weight; r denotes the Pearson correlation. The Pratt’s measures d is
given by (b 9 r)/R2. A Pratt’s measure less than 1/(2p) is considered unimportant where p refers to the
number of predictors. Predictors that meet this criterion of importance are in bold font

4 Note that missing data may lead to the estimation of the beta-weights using the ON command and simple
correlations using the WITH command being based on different subjects in Mplus. This problem could
distort the calculation of the Pratt’s measures; i.e., the sum of the Pratt’s measures would not add up to one.
Instead of using the WITH command, one possible solution is to save the scores of the growth factors I and S
and use the simple bivariate correlations obtained in SPSS. To save the scores of the growth factors I and S
in Mplus, use the SAVEDATA and SAVE = FSCRES commands for the OUTPUT.
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assumption in the present study. Gamma change refers to qualitative change in the

conceptual domain of the construct. That is, the meaning of the construct changes over

time.

In this illustration, we did not find considerable quantitative change in the WLS cohort’s

psychological well-being under the premise of no qualitative change in the construct of

psychological-well-being. Our study, however, did not rule out the possibility of qualita-

tive change in the score meaning of psychological well-being; that is, the issue of temporal

measurement validity was assumed and untouched in this study. Although embedding

measurement may sidestep the problems of scaling change and allows for investigation of

measurement invariance, it does not examine whether the same theoretical construct has

been measured across data collections. In fact, in the present study, the correlations among

the four latent psychological well-being scores are fairly low (ranging from 0.133 to

0.522). If the same construct had been measured, these scores should, at least, correlate

fairly highly.

Dropping or adding items, as the WLS did, may lead to some content domains of the

theoretical construct being underrepresented, overrepresented, or simply misrepresented.

Any modification of the instrument may change the meaning of the test scores and result in

invalidity in cross-time score interpretation in a growth study. Test scores may have

different meanings across time even if the MIML invariance constraint is able to recali-

brate them on the same metric at the latent variable level. Our best advice is to select one

instrument that would work well over time. An extensive psychometric review of the

instrument and a pilot study would certainly help the selection of the instrument. Other-

wise, careful attention should be paid to ensure that the same content domains are rep-

resented when modifying the instrument. Also, additional evidence should be provided to

show that the same theoretical construct has been measured across time.

Note that one cannot rule out gamma change even if one uses the same instrument over

time. Respondents may have changed their thinking, emotions, or attitude towards the

construct during the studied period. For example, the concept of psychological well-being

may have different meanings to the cohort as they grow older. To reiterate, the MIML

model is an insufficient tool if gamma change has occurred; in that case, other methods for

studying qualitative change should be applied—e.g., a special case of latent class analysis

called latent transition analysis (see Kaplan 2008).

In closing, the embedding of a measurement model into a growth model provides a very

versatile framework for studying growth and change. In this paper, we described the

capacity of the MIML model in solving many practical data analytical problems that often

occur in growth studies. The problems of scaling change can be easily solved by modeling

growth of the latent variable created by the mean and covariance structure of the Z scores.

Built-in measurement invariance constraints investigate whether cross-time scores are

warranted for a growth study. Making use of the flexibility of SEM, the concern over

residuals dependence can be easily modeled according to the researcher’s theory and study

design. The issue of unknown observed growth curve can be aptly modeled using free time

score of the slope growth factor. The use of Pratt’s measures enables researchers to order

the importance of the predictors for the growth factors. Despite all these strengths, to date,

the MIML model is hardly used in day-to-day data analyses. This paper serves to motivate

and promote future use of the MIML model.

MIML Growth Model 139

123



Appendix: Mplus syntax for 3-level MIML growth model

TITLE: Latent Growth Model for Multiple Indicators Observed over Four Time Points.

DATA: FILE IS WLS_gc_fullZscore.dat;
FORMAT is 385.F11;

VARIABLE:
NAMES ARE   Za92p Ze92p Zpg92p Zpr92p Zpu92p Zs92p

Za92m Ze92m Zpg92m Zpr92m Zpu92m Zs92m
Za02p Ze02p Zpg02p Zpr02p Zpu02p Zs02p
Za02m Ze02m Zpg02m Zpr02m Zpu02m Zs02m
sex hsrank edusuc wksuc finsuc
famsuc extr92 agre92 cons92 neu92 open92;

USEVAR = Za92p Ze92p Zpg92p Zpr92p Zpu92p Zs92p
Za92m Ze92m Zpg92m Zpr92m Zpu92m Zs92m
Za02p Ze02p Zpg02p Zpr02p Zpu02p Zs02p
Za02m Ze02m Zpg02m Zpr02m Zpu02m Zs02m

sex hsrank extr92 agre92 cons92 neu92 open92;

ANALYSIS: TYPE IS MEANSTRUCTURE;

MODEL:

!! Level-1 Measurement Model
!! Specifying Intercept Equality

[Za92p Za92m Za02p Za02m] (1);
[Ze92p Ze92m Ze02p Ze02m] (2);
[Zpg92p Zpg92m Zpg02p Zpg02m] (3);
[Zpr92p Zpr92m Zpr02p Zpr02m] (4);
[Zpu92p Zpu92m Zpu02p Zpu02m] (5);
[Zs92p Zs92m Zs02p Zs02m] (6);

!! Specifying Loading Equality
F1 by Za92p@1 

Ze92p-Zs92p (7-11);

F2 by Za92m@1 
Ze92m-Zs92m (7-11);

F3 by Za02p@1 
Ze02p-Zs02p (7-11);

F4 by Za02m@1 
Ze02m-Zs02m (7-11);

!! Correlated Residual Errors

Za92p with Za92m Za02p Za02m;
Za92m with Za02p Za02m;
Za02p with Za02m;
Ze92p with Ze92m Ze02p Ze02m;
Ze92m with Ze02p Ze02m;
Ze02p with Ze02m;
Zpg92p with Zpg92m Zpg02p Zpg02m;
Zpg92m with Zpg02p Zpg02m;
Zpg02p with Zpg02m;
Zpr92p with Zpr92m Zpr02p Zpr02m;
Zpr92m with Zpr02p Zpr02m;
Zpr02p with Zpr02m;
Zpu92p with Zpu92m Zpu02p Zpu02m;
Zpu92m with Zpu02p Zpu02m;
Zpu02p with Zpu02m;
Zs92p with Zs92m Zs02p Zs02m;
Zs92m with Zs02p Zs02m;
Zs02p with Zs02m;

!!---------------------------------------------------------------------------------
!! Level-2 Latent Growth Model

!! Specifying Growth Factor I and S and Growth Function                          
I  S | F1@0 F2@ -1 F3* F4*;                 

!!-------------------------------------------------------------------------------
!! Level-3 Inter-individual Model

!! Predicting Growth Factors i and s (should be inactive while using the WITH command)
I  S ON sex hsrank extr92 agre92 cons92 neu92 open92;

!! Obtaining Simple Correlations (should be inactive while using the ON command) 
I  S WITH sex hsrank extr92 agre92 cons92 neu92 open92;

OUTPUT:
STANDARDIZED TECH4;    
SAVEDATA: File is MIML.dat;

SAVE = fscores;
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