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Abstract

The notion that nonparametric methods are
required as a replacement of parametric statis-
tical methods when the scale of measurement
in a research study does not achieve a certain
level was discussed in light of recent develop-
ments in representational measurement the-
ory. A new approach to examining the prob-
lem via computer simulation was introduced.
Some of the beliefs that have been widely
held by psychologists for several decades were
examined by means of a computer simulation
study that mimicked measurement of an
underlying empirical structure and performed
two-sample Student #tests on the resulting
sample data. It was concluded that there is no
need to replace parametric statistical tests by
nonparametric methods when the scale of
measurement is ordinal and not interval.

Stevens’ (1946) classic paper on the theory
of scales of measurement triggered one of
the longest standing debates in behavioural
science methodology. The debate — referred
to as the levels of measurement controversy,
or measurement-statistics debate — is over the
use of parametric and nonparametric statis-
tics and its relation to levels of measurement.
Stevens (1946; 1951; 1959; 1968), Siegel
(1956), and most recently Siegel and
Castellan (1988) and Conover (1980) argue
that parametric statistics should be restricted
to data of interval scale or higher. Further-

more, nonparametric statistics should be
used on data of ordinal scale. Of course,
since each scale of measurement has all of
the properties of the weaker measurement,
statistical methods requiring only a weaker
scale may be used with the stronger scales.
A detailed historical review linking Stevens’
work on scales of measurement to the accept-
ance of psychology as a science, and a peda-
gogical presentation of fundamental axio-
matic (i.e., representational) measurement
can be found in Zumbo and Zimmerman
(1991).

Many modes of argumentation can be seen
in the debate about levels of measurement
and statistics. This paper focusses almost
exclusively on an empirical form of rhetoric
using experimental mathematics (Ripley,
1987). The term experimental mathematics
comes from mathematical physics. Itis loose-
ly defined as the mimicking of the rules of
a model of some kind via random processes.
In the methodological literature this is often
referred to as monte carlo simulation. How-
ever, for the purpose of this paper, the terms
experimental mathematics or computer
simulation are preferred to monte carlo
because the latter is typically referred to
when examining the robustness of a test in
relation to particular statistical assumptions.
Measurement level is not an assumption of
the parametric statistical model (see Zumbo
& Zimmerman, 1991 for a discussion of this
issue) and to call the method used herein
“monte carlo” would imply otherwise. The
term experimental mathematics emphasizes
the modelling aspect of the present
approach to the debate.

The purpose of this paper is to present a
new paradigm using experimental mathemat-
ics to examine the claims made in the levels
of measurement controversy. As Michell
(1986) demonstrated, the concern over levels
of measurement is inextricably tied to the
differing notions of measurement and scal-
ing. Michell further argued that fundamental
axiomatic measurement or representational
theory (see, for example, Narens & Luce,
1986) is the only measurement theory which

&2

I
)
|
I




implies & relation between measurement
scales and statistics. Therefore, the approach
advocated in this paper is linked closely to
represen tational theory. The novelty of this
approach, to the authors knowledge, is in the
use of experimental mathematics to mimic
representational measurement. Before
describing the methodology used in this
paper, we will briefly review its motivation.

Admissible Transformations
Representational theory began in the late
1950’s with Scott and Suppes (1958) and
later with Suppes and Zinnes (1963),
Pfanzagl (1968), and Krantz, Luce, Suppes
& Tversky (1971). Recent expositions by
Roberts (1979) and Narens (1985) exemplify
the prevailing wisdom in representational
measurement. Narens and Luce (1986)
demonstrate some exquisite mathematical
ideas, stemming from abstract algebra and
the foundations of mathematics. Representa-
tional theory views measurement as a map-
ping or function (i.e., 2 homomorphism or
isomorphism) of some underlying empirical
structure to a representational structure.
There is usually more than one function
possible in the representation and therefore
the uniqueness of the function is in question.
The uniqueness is demonstrated via a unique-
ness theorem which tells the researcher how
the functions that constitute the representa-
tion (i.e., scale) relate to one another.
Stevens’ (1946, 1951) notion of admissible
transformations is used with the uniqueness
theorem to define a scale type. That is, a
ratio scale is one in which the admissible
transformations are of the form f(x) = ax,
where a > 0. An interval scale is one in which
positive linear transformations are admissible.
An ordinal scale is one in which the admiss-
ible transformations are monotone increas-
ing functions. Finally, a nominal scale is one
in which the admissible transformations are
one-to-one functions. For further discussion
of the issue of similarity, linear and affine
transformations see Stine (1989a; 1989b).
The uniqueness theorem not only aids in
the classification of the scale type but it also

Alternatives 391

puts limitations on the mathematical oper-
ations which will preserve truth about the
empirical structure (see, Adams, Fagot, &
Robinson, 1965; Roberts, 1979; Siegel &
Castellan, 1988). This notion of preserving
truth is known as invariance or the appropri-
ateness criterion. That is, a numerical state-
ment is appropriate if and only if its truth
(or falsity) remains unchanged under all
admissible transformations of the scale
involved. The appropriateness criterion
directs the debate away from the statistical
model and onto the statistical hypothesis.

" That is, it does not impose restrictions con-

cerning the computation of statistics for a
scale, but it does impose restrictions concern-
ing certain statements about those statistics.

Adams, Fagot, and Robinson’s theory of
appropriateness is cited by textbooks such as
Hays (1988), Conover (1980) and Siegel &
Castellan (1988) as the reason why paramet-
ric statistics should not be used with ordinal
data. This is certainly consistent with Adams
et al.; but Hays and the other authors never
state that the appropriateness criterion is not
applicable for systems of measurement for
which there are not a clearly defined set of
permissible transformations (i.e., measure-
ment scale). Unfortunately, most of the
scales in behavioural sciences are those for
which we do not know the set of permissible
transformations. Therefore, clearly the math-
ematically elegant appropriateness criterion
has very little applicability for most of the
behavioural sciences and therefore has not
resolved the measurement statistics debate
for most behavioural measurements.

The above limitation of the appropriate-
ness criterion was also stated by Adams et al..
For many of the other counter arguments to
representational theory’s claims to appropri-
ate statistics see Zumbo & Zimmerman
(1991).

The present study

With this study we examined the measure-
ment-statistics controversy within a framework
of experimental mathematics. Previous
empirical studies (see, for example, Baker,
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Hardyck, & Petrinovich, 1966; or Gregoire &
Driver, 1987; and a commentary by Ras-
mussen, 1989) have begun with an ordinal
representational system, and then applied
illegitimate transformations to this represen-
tational system in order to examine the
robustness of the test. The limitations of this
approach are discussed by Townsend and
Ashby (1984), Stine (1989a), and Zumbo and
Zimmerman (1991).

The conclusion drawn from the empirical
studies is that the parametric tests perform
well on “normally” distributed ordinal data;
however, the nonparametric tests perform
better than the parametric tests for several
nonnormal distributions. Furthermore, the
performance of the parametric tests is not
hindered by ordinal measurement. However,
these emipirical investigations focussed their
attention solely on the notion of invariance
of the representations or mappings with
respect to each other as expressed in the
appropriateness criterion.

What Baker et al. and Gregoire and Driver
did was start with a numerical representa-
tional system (or the observed scores which
researchers would usually obtain), which they
assumed was of ordinal scale. Unfortunately,
from the observed scores one cannot discern
the scale of measurement. Therefore, gener-
ating integers on the interval 1 to 10 (as in
Baker et al.) or 1 to 100 (as in Gregoire &
Driver) does not guarantee an ordinal scale.
Hence, a test of whether the measurement
scale is important when we apply statistical
tests would require mimicking ordinal
measurement so that the statistic computed
under conditions of perfect measurement
can be compared with the statistic based on
imperfect measurements.

According to Baker et al, to state the
problem of invariance of results under scale

transformations raises the following question:

‘Can we make correct decisions about the
nature of reality if we disregard the nature
of the measurement scale when we apply
statistical tests?’ (p. 293). For the representa-
tional theorist, the nature of reality is
reflected within the underlying structure.

A test of this question would seem to
require a comparison of the statistical deci-
sion made on the underlying structure with
that of the statistical decision made on the
observed numerical representational struc-
ture. Therefore, what is required is to mimic
representational measurement. If the statisti-
cal decision based on the underlying struc-
ture is consistent with the decision made on
the representational structure then level of
measurement is not important when applying
statistical tests. If the statistical decision based
on the underlying structure is not consistent
with the decision made on the representa-
tional structure then level of measurement
is important when applying statistical tests.
Since statistical statements are probabilistic,
consistency of the statistical decision is
reflected by the power functions for the
given test. The power functions can be inter-
preted, then, as similar to truth functions in
formal logic.

The point of contention in the measure-
ment-statistics debate is whether it is appro-
priate to use parametric statistics on ordinal
data. When alternative statistical tests are
available, a criterion for choosing among
them is statistical power (given that they
maintain type I error rate). Statistical power
reflects a correct rejection of the hypothesis.
Therefore, a comparison of the power func-
tions of a statistical test based on the underly-
ing empirical structure and the ordinal
structure sheds light on the measurement-
statistics debate and avoids the notion of
invariance of arithmetic operations and
Adams et al.’s appropriateness criterion.

In summary, previous researchers have
focussed on the invariance of arithmetic
operations and representations. We believe
our novel paradigm approaches the problem
with a different form of invariance. That is,
we use the underlying structure as the frame
of reference for the invariance rather than
the representations. Developments in mod-
ern representational theory (i.e., post-
Stevenson) are used to mimic measurement.
Experimental mathematics is used to gener-
ate an underlying structure with specified
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distributional forms, variances, and mean
differences and then a measurement is
obtained from this. :

It should be noted that statistical power is
dependent not only on the sample size, the
predetermined type I error rate, and popula-
tion noncentrality parameter and variances
(see Hays, 1981) but also the test under
consideration. Therefore, the results of this
study are limited to the test and conditions
examined.

The test statistic selected for study was.

Student’s #test for two independent samples.
The nonparametric alternative to the #test
is the Wilcoxon-Mann-Whitney test. The #-test
is one of the most commonly used statistics
in the behavioural sciences and has the
advantage of having been studied thoroughly
(for a recent discussion, see Sawilowsky &
Blair, 1992). For the purpose of this paper
we examined cases with equal sample sizes
and equal variances.

Method

An ordinal scale is one of a family of scales
for which the basic rules for assigning num-
bers are the determination of order. The
basic form of ordinal measurement is the
rank ordering of information. A rank order-
ing is an order-preserving mapping of a set
of numbers onto the set of the first ¥ inte-
gers. In the case of rank ordering in two-
sample tests, N is the sum of the two sample
sizes.

Ranks are not the only ordinal scale that
is possible. Ordinal measurement which
involves further loss of the original informa-
tion in the empirical structure would involve
a distortion of the ranks by creating ties. This
is also referred to as a partially-ordered
structure. To simulate further loss of infor-
mation than ranks, we developed pseudo-
ranks. Pseudoranks, involve even more loss
of information than ranking. To calculate
the pseudoranks we divided each rank value
by 1.10 and then invoked a function which
would simply truncate the decimal portion
of the dividend and return the integer value.
One problem with this procedure is that the
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rank of one always becomes zero. So, by
default, in the pseudorank procedure, the
rank of one was not changed.

In measurement, loss of information is not
the only distortion of the empirical structure.
Measurement error also plays an important
role. Measurement error has been discussed
extensively in classical test theory (Lord &
Novick, 1968; Rozeboom, 1966a; Zimmerman,
1969, 1975a, 1975b, 1976). Interpreted within
the framework of this study, measurement
error should not be related to the rank, as
well the error distribution should have a
mean of zero. To simulate measurement
error, a value, randomly selected from a
Gaussian (Normal) distribution with mean
zero and unit variance, was added to the
rank of each score. _

In summary, we have mimicked measure-
ment via the use of experimental mathemat-
ics (computer simulation). An underlying
empirical structure was created with two
independent samples of equal means and
variances. The underlying empirical structure
was generated with varying sampling distribu-
tions. The distribution used in this study was
the Gaussian or Normal distribution. This
was chosen because it was the distribution
used in the derivation of the rtest. Further-
more, the purpose of this paper was to intro-
duce the new paradigm and give some pre-
liminary results. In this study we wished to
examine the relative Type I error rate and
power for the rtest on the empirical struc-
ture and ordinal representations. Of particu-
lar interest was the relative power under
conditions of similar population distributions
(i.e., with identical shape and variance).
Future research will be discussed in the final
section of this paper.

Computer Simulation Method

A computer program generated random
samples based on pseudorandom numbers
from the distribution described below and
performed five significance tests of location
on each pair of samples. Sample sizes were
N, =N, =4, 8, 12, 16, and 25, and all tests
were nondirectional. These sample sizes were
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chosen because they are representative of
research in psychological and social sciences,
and are similar to sample sizes used in previ-
ous simulation studies (see for example,
Boneau, 1960; Baker, Hardyck, & Petrino-
vich, 1966).

For the simulations the Type I error rate
and power were calculated for a = .05, .01
and .10 on data from independent popula-
tions of homogeneous variance. For Type I
error rate and power 5000 replications were
carried out for each degree of separation
between means, that is, for each point of the
power function. For each replication, N,
values were generated according to the
specified probability distribution and then w,
values were generated independently from
the same distribution and the test statistic
was calculated. The Type I error rate was the
proportion of replications in which the
obtained test statistics exceeded the critical
values (i.e., declared statistically significant).
For the power of the statistical tests, an effect
size of ES = 0.50 to 4.0 standard units of
difference (in increments of .50) was added
to N,. For each effect size the statistics were
calculated and compared with their critical
values. The power of the statistical test, at a
given effect size, was represented by the
proportion of replications for which the test
was declared significant.

The order of tests are as follows: first, a
Student rtest for independent groups was
performed on the original values. Next, these
values were ranked, and a Wilcoxon-Mann-
Whitney test statistic was calculated in the
usual way from rank sums. At this point, the
Student rtest was performed on the ranks.
Then, the pseudoranks and the ranks with
measurement error were introduced.

In the case of pseudoranks, the partially-
ordered structure, the ranks were replaced

1 For sample size of 16, the significance level for w
and ¢ was set at .0475 because for this sample size
there is no tabled integral value of W associated with
an exact probability of .05. The critical values were

t = 2.0765, and w = 75.495. See Zimmerman &
Zumbo (1989) for a note on this matter.

by integral-valued functions of the ranks. The
sixteen ranks assigned to the original com-
bined samples of N, = N, = 8, were replaced
by integers from the set {1,1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 10, 11, 12, 13, 14}. The thirty-two
ranks assigned to the original combined
samples of N, = N, = 16, were replaced by
integers from the set of the sixteen integers
of the prior set, as well, {15, 16, 17, 18, 19, 20,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29}, and so
on. It should be noted that ties were evident
in the pseudoranks.

Next, the transformation mapping ranks
to ranks with measurement error (rme) was
investigated. For each case, a number was
selected from the Gaussian distribution, with
mean zero and unit variance, and added to
the initial rank. In this way, the sample
values associated with the rme were no
longer all integral valued and vary from
sample to sample.

Student fttests were applied to the
pseudoranks and to the ranks with measure-
ment error. Differences between population
means were introduced, so that the probabil-
ities of both Type I and Type 1 errors and
points on the power function could be
obtained. The differences were expressed in
units of the standard error of the difference
and ranged from 0 to 4.0 standard error
units, in increments of 0.5.

When using power functions, an important
property of the functional relation is the
effect size, ES. The effect size is a ratio of the
mean differences and standard deviations in
the population. For present purposes, an
issue that should be addressed is the effect
for the power functions of the representa-
tions (i.e., ranks, pseudoranks, and ranks
with measurement error). The fundamental
point of contention in the measurement-
statistics debate is whether the ordinal map-
ping preserves the effect (i.e., mean differ-
ence). Therefore, the present simulation was
designed so that the effect size was intro-
duced only for the underlying empirical
structure. The empirical structure was then
mapped to the ordinal representations and
statistical tests were performed to examine
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whether the mean difference was preserved.

METHODS OF SIMULATING VARIATES

The methods of simulating the variates were
as follows (see Lehman, 1977; Morgan, 1984;
Devroye, 1986, and Ripley, 1987, as standard
texts). In all cases X, and X, are independent
pseudorandom numbers on the interval
[0,1]:

Gaussian (Normal) Distribution. Normal devi-
ates were generated using the method of Box
and Muller (1958). The relation used was
X =y-2log X, cos 2 I X,. The pseudo-
random numbers were generated using a
well-known and thoroughly tested prime-
modulus multiplicative congruential gener-

ator described by Lewis and Orav (1989) and
Lewis, Goodman, and Miller (1969).

Results
Tables 1 and 2 contain the empirical power
functions for sample sizes of 4 through 25
and Table 3 presents the results for varying
apriori Type I error rates, a. The tables were
constructed such that, for each sample size,
the column labelled ES represents the effect
size.. The effect size was measured in terms
of standard units of difference between
population means (This is also referred to as
the noncentrality parameter, see Hays, 1981,
pp. 287-289 for details) ranging from 0 to 4
in increments of .50. Due to space limita-
tions, Tables 2 and 3 report three points of
the power functions rather than nine”. The
numbers in the columns represent the prob-
ability measure (i.e. the proportion of test
statistics declared significant). The functional
relation of the effect size and probability
values is the power function given that the
Type I error rate was close to that set apriori.
The probability values at 0 units of difference
is the Type I error rate,

It was previously noted by Conover and
Iman (1981) that the Wilcoxon-Mann-Whit-
ney test is statistically equivalent to a r-test on

2 A more complete list can be obtained from the
authors.
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TABLE 1 -
Power function for a Gaussian distribution for vari-
ous sample sizes (Tolerance band in parentheses).

N=4
ES Underlying W/rank Pseudo- Ranks/
ranks error
0 054 (048, 059) 058 058 061%*
0.5 079 (071, 087) 082 082 087
1.0 150 (135, 165) 148 148 149
1.5 259 (233, 285) 250 250 242
2.0 400 (360, 440) 394 394 371
2.5 576 (518, 634) 553 553 509%*
3.0 726 (653, 799) 704 704 624*
3.5 842 (758, 926) 821 821 724%
4.0 921 (829, 100) 905 905 812%
N=8
ES  Underlying W/rank Pseudo- Ranks/
ranks error
0 046 (041, 051) 043 051 046
0.5 071 (064, 078) 069 080* 071
1.0 155 (140, 171) 149 170 150
1.5 298 (268, 328) 288 311 283
2.0 467 (420, 514) 448 474 445
2.5 648 (583, 713) 620 645 609
3.0 809 (728,890) 782 802 77
3.5 911 (820, 100) 886 902 875
4.0 965 (869, 100) 955 962 945

Note: Values reported in table without decimal
point. * indicates not within the tolerance band.

ranked values. This statistical equivalence was
discussed by Zimmerman & Zumbo (1989,
1993). The definition of equivalence was
further elaborated such that two tests were
said to be alpha-equivalent if, when per-
formed on the same sample data using the
same significance level, they always lead to
the same statistical decision (Zimmerman &
Zumbo, 1990). Therefore, for clarity of pres-
entation, one power function labelled w/rank
represented the statistical decisions for the
Wilcoxon-Mann-Whitney and #test on ranks.
It should be noted however, that the rank
transformation has recently been demon-
strated to be detrimental for some designs
other than the two independent samples case
discussed in the present paper (see, for
example, Blair, Sawilowsky, & Higgins, 1987;
Sawilowsky, Blair, & Higgins, 1989; Sawi-
lowsky, 1989, 1990).
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The power functions for #tests on the
underlying empirical structure are labelled
Underlying. The ttests on pseudoranks are
labelled Pseudoranks. And finally, the ttests
on ranks with measurement error are
labelled ranks/error.

A criterion for judging whether the repre-
sentational (i.e., rank, pseudo ranks, and
ranks with error) power functions were
consistent with the empirical structure was
set to plus or minus 10% of the value for the
underlying distribution. This is a tolerance
band and is listed in parentheses next to
power estimate for the underlying empirical
structure throughout all of the tables. The
criterion of 10% was chosen somewhat
arbitrarily but was a compromise between the
rather conservative measurement which
would treat each probability entry as a series
of 5000 Bernoulli trials and calculate a stan-
dard error of the point estimate, and the
rather liberal “eye-balling or interocular test”
of the results’.

Examining Tables 1, 2 and 3 it seems evi-
dent that conducting a Wilcoxon-Mann-
Whitney test or a ttest on the pure ordinal
representation (i.e., ranks) will consistently
yield the same statistical decision. This is
evident from the fact that the two power
functions could be summarized as one. That
is, the power functions are alpha-equivalent.
Generally, the ttests on pseudoranks and
ranks with measurement error are within the
tolerance regions of the #tests on the under-
lying structure. The exceptions being for
small sample sizes of 4 per group with large
effect sizes and the three cases where the
values were barely outside the tolerance
band.

Discussion

The measurement-statistics debate was exam-
ined by the vehicle of experimental mathe-
matics. Ordinal measurement was simulated
by utilizing axiomatic representational
theory’s formalisms of a representation.
Representational theory, like its predecessor,
Stevens’ scale type theory (Stevens, 1946,
1951, 1968), places limitations on the use of

TABLE 2 .
Three points of the power function for a Gaussian
distribution for various sample sizes (Tolerance
band in parentheses).

N=12
ES Underlying W/rank Pseudo- Ranks/
ranks error
0 050 (045, 055) 052 050 052
1.5 305 (275, 336) 299 289 290
3.0 824 (742, 906) 806 798 794
N=16
ES Underlying W/rank Pseudo- Ranks/
ranks error
0 051 (046, 056) 049 051 047
1.5 297 (267, 327) 280 286 282
3.0 822 (740,904) 804 810 803
N=25
ES Underlying W/rank Pseudo- Ranks/
ranks error
0 044 (040, 048) 050 044 044
1.5 286 (257, 315) 290 275 273
3.0 823 (741, 905) 821 807 806

Note: Values reported in table without decimal
point.

parametric statistics on ordinal measure-
ments (Townsend & Ashby, 1984).

The objection to the use of parametric
statistics on ordinal measurement is that the
statistical decision on the ordinal structure
will not be consistent with the nature of the
decision on the unobservable structure®. The
present paper uses experimental mathemat-
ics so that the latent structure becomes
observable. Simulating an artificial latent
structure with preset specifications allows an
examination of the statistical decision on the

3 The value of 10% was decided upon because it is
the subjective value the authors use when examin-
ing published monte carlo studies. This issue is
directly related to the definition of robustness in
monte carlo studies as discussed by Bradley (1978).

4 We use Neyman-Pearson two-point hypothesis
testing as a mechanism to examine the measure-
ment-statistics debate. This use should not be inter-
preted as indicative of our support of the blind use
of hypothesis testing in practical research settings.

4




TABILE 3 -
Three points of the power function for a Gaussian
distribution for various alpha levels and ~ = 8 (Tol-
erance band in parentheses). 4

o=.01 )
ES Underlying W/rank Pseudo- Ranks/
ranks error
0 010 (009, 011) 010 010 012*
1.5 105 (095, 116) 110 108 114
3.0 529 (476, 582) 511 505 512
o=.10
ES Underlying W/rank Pseudo- Ranks/
ranks error
0 097 (087,107) 100 097 097
1.5 422 (380, 464) 412 402 394
3.0 895 (806, 985) 880 874 857

Note: Values reported in table without decimal
point. * indicates outside of the tolerance band.

latent structure relative to the statistical
decision on the ordinal structures. This
allows us to examine whether the statistical
decision is hindered by the use of ordinal
measurement; as predicted by Stevens and
modern axiomatic representational theorists.

In general, the results indicate that for
statistical hypothesis testing of two-sample
location problems (i.e., tests of mean differ-
ences) itis not detrimental to use parametric
tests on ordinal data. That is, if a mean
difference is evident in the latent structure,
then the ttest or Wilcoxon-Mann-Whitney
test performed on data from an ordinal
representation will indicate a mean differ-
ence, at least as often as a rtest on the
empirical structure. Also, if no mean differ-
ence is evident in the latent structure, then
the ttest or Wilcoxon-Mann-Whitney test
performed on data from an ordinal represen-
tation will indicate no mean difference as
often as a ttest on the empirical structure.
These findings also are maintained for vari-
ous sample sizes and significance levels.

Of particular importance is the finding
that the power functions for the #tests on the
ordinal representations are very similar to
the power functions for the nonparametric
Wilcoxon-Mann-Whitney test. This indicates
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that there is no benefit to be gained from
excluding the use of parametric statistics on
ordinal data. These findings are also true for
various sample sizes and significance levels.

An alternative interpretation of our results
is offered by Stine (1989c). He argues that
given we generate an underlying structure
which has a probability distribution we are
implicitly imposing an interval metric struc-
ture upon our underlying empirical struc-
ture. Therefore, he interprets our present
results with the caveat that they are only true
given that we have an ordinal measurement
of a interval latent measure. Stine’s (1989a)
statement that we cannot resolve the levels
of measurement debate via computer simula-
tion is related to the above reinterpretation.
That is, any computer simulation must gener-
ate interval scaled latent variables because we
cannot generate a latent variable without
metric structure. That is, when we generate
pseudorandom numbers we are imposing a
uniformly distributed generating process and
therefore has metric structure. Of course,
any transformations of the pseudorandom
numbers to create other distributional shapes
also suffers of Stine’s limitations.

Latent Variables

We concur with Stine (1989¢) that the pres-
ent results must be framed within a context
of at least an interval scaled latent variable.
However, we do not consider this a limita-
tion. For practical purposes, when research-
ers consider latent variables they implicitly
impose at least an interval structure upon
them By their operationalization (See
Rozeboom, 1966b, on the issue of imposing
content on a latent variable). Researchers
usually think about latent variables with a
metric structure (i.e., distributional shape).
Classic examples come from the domain of
intelligence where 1.Q. scores are normally
distributed or cognition and cognitive
science where reaction time/response time
data are argued to be either Exponential or
Gamma distributed. As well, Item Response
theory (also referred to as Modern tests
theory, see Lord & Novick, 1968) where the
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latent trait or ability is Normally distributed.
It is not unusual to impose an interval struc-
ture on unobserved measures. We know of
no measures which are conceived of without
distributional form. This may in fact be a
residue of the interweaving of statistical
theory through modern systemic behavioural
and social sciences.

In fact, Stine’s interpretation of the results
reflects a clear line on which scholars
involved in the measurement statistics debate
are divided (this was also suggested by
Michell, 1986 but becomes clearer with the
current results). Many of the individuals who
state that levels of measurement are not
important (for example, Davison & Sharma,
1988, 1990; Lord, 1953) impose an interval
structure to the latent variable. Stine (1989c¢)
is suggesting a mathematically interesting
scenario wherein the underlying variable has
no metric structure; however, almost all
behavioural and social science research deals
with variables with a metrically defined latent
structure.

Therefore, for the practicing researcher to
test hypotheses of mean differences, all that
is needed to maintain statistical power and
type I error rate, is ordinal information from
the underlying empirical structure. The
results indicate that, when deciding whether
to use parametric or nonparametric statistical
methods for a two-sample location problem,
the level of measurement is not the criterion
on which to make this decision. In fact, the
form or shape of the probability distribution
is a better criterion than levels of measure-
ment.

These findings are, of course, restricted to
the parameters (for e.g., two independent
samples, equal variances, a location shift
model, etc.) examined within this study.
Forthcoming work will examine the case
where the underlying distributions are not
Normally distributed. There is no need to
assume that the underlying structure is Nor-
mally distributed; it could be one of a multi-
tude of distributional shapes. Also, this para-
digm will be used to examine other uni-
variate and multivariate statistical procedures.

On a methodological note, forthcoming work
will deal with a more precise criterion for
comparing power functions, in particular, a
possible empirical tolerance band or explor-
ing further the notion of a truth function.
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