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ON OPTIMIZING MULTI-LEVEL DESIGNS:
POWER UNDER BUDGET CONSTRAINTS

Todd C. Headrick1∗ and Bruno D. Zumbo2

Southern Illinois University-Carbondale and University of British Columbia

Summary

This paper derives a procedure for efficiently allocating the number of units in multi-level
designs given prespecified power levels. The derivation of the procedure is based on a
constrained optimization problem that maximizes a general form of a ratio of expected
mean squares subject to a budget constraint. The procedure makes use of variance com-
ponent estimates to optimize designs during the budget formulating stages. The method
provides more general closed form solutions than other currently available formulae. As
such, the proposed procedure allows for the determination of the optimal numbers of units
for studies that involve more complex designs. A method is also described for optimizing
designs when variance component estimates are not available. Case studies are provided
to demonstrate the method.
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1. Introduction

The efficient allocation of economic resources in experimental designs has long been
a topic of discussion (e.g. Deming, 1953; Brooks, 1955; Overall & Dalal, 1965; Cochran,
1977; Hsieh, 1988; Donner, Brown & Brasher, 1990; Muller et al., 1992; Marcoulides, 1993;
Snijders & Bosker, 1993; Raudenbush, 1997; Moerbeek, van Breukelen & Berger, 2000, 2001;
Headrick & Zumbo, 2001). For example, Brooks (1955) derived a procedure for determining
the optimal subsampling number, subject to a budget constraint, for a design that involved
two-stage sampling. This procedure was extended to three-stage sampling (Cochran, 1977
p .285) and also used to determine optimal sampling numbers for some multi-level designs
(e.g. Moerbeek et al., 2000; Headrick & Zumbo, 2001).

Consider an r-level design that consists of ni units at the i th level where i = 1, . . . , r.
For any particular design, there may be a number of different null hypotheses formulated and
tested. However, in the test of any specific hypothesis, the ratio of expected mean squares has
the general form

R = σ2
0 + mσ2

r+1

σ2
0

. (1)

The term σ2
0 is defined as the total component of variance present in both the numerator and

denominator of (1) and is expressed as a linear combination of at most r variance components.
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220 TODD C. HEADRICK AND BRUNO D. ZUMBO

The component σ2
r+1 is the additional term in the numerator that is associated with some

treatment effect. The term m is a general coefficient that denotes the total magnitude of all
other coefficients associated with σ2

r+1 .
Most modern statistical software packages (e.g. MINITAB, 2000) estimate a non-centrality

parameter δ using estimates of the variance components from a set of data. In the context of
(1), the non-centrality parameter can be expressed as

δ = kmσ2
r+1

σ2
0

, (2)

where k is the number of means (from k populations) in the null hypothesis.
Consider, for example, (1) and (2) in terms of a two-level design that consists of taking

two measurements at n1 time periods on each of n2 randomly selected subjects from k dif-
ferent treatment populations. Given appropriate assumptions, (1) and (2) can be expressed by
setting r = 2 as

R = σ2
1 + 2n1σ

2
2 + 2n1n2σ

2
3

σ2
1 + 2n1σ

2
2

, (3)

δ = k2n1n2σ
2
3

σ2
1 + 2n1σ

2
2

, (4)

where σ2
0 = σ2

1 + 2n1σ
2
2 , m = 2n1n2 , σ2

3 = ∑
τ2
j /k, and where τj is the hypothesized

deviation of the j th treatment mean. The denominator of (3) consists of r = 2 independent
sources of random variation which have expected values of zero and variances σ2

1 and σ2
2 .

Thus, R in (3) would represent the ratio of expected mean squares associated with the omnibus
test of significant treatment differences.

When economic resources are scarce, what are the optimal sizes of n1 and n2 for the
design described above? For general situations where power is a concern, this question can
be formulated in terms of r-level designs as: what are the optimal integer values of n1, . . . , nr
to use in an r-level design such that the selected units of ni yield a targeted level of power for
a specific hypothesis test at minimum cost?

Overall & Dalal (1965) proposed a procedure for obtaining the optimal numbers of units
(ni) for some multi-level designs based on (1) such that power could be maximized for a fixed
budget, but their procedure lacks generality and is laborious. Specifically, it entails writing
out all possible experimental situations given fixed prices and a total budget. For each of the
experimental possibilities, the subsequent tasks are: (a) refer to previous research to estimate
the variance components, (b) determine the non-centrality parameter, and (c) refer to power
tables to determine the allocation that maximizes power subject to the total budget. Further,
Overall & Dalal (1965) made no attempt to target a particular level of power, so that the
optimal solutions may yield an unacceptably low level of power because of an inadequate
initial budget.

The methods of Brooks (1955), Cochran (1977 p .285) and Moerbeek et al. (2000) are
based on minimizing error variance, i.e. the denominator in (1), to obtain the optimal alloca-
tion. The problem with these methods is that effect sizes, degrees of freedom, and power are
not generally considered. Specifically, while these models do indeed minimize error variance
they may in general yield solutions with an unacceptably low level of power due to an insuffi-
cient budget. The procedure suggested by Moerbeek et al. (2000 p .281) allows for an effect
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size to be used to determine the minimum funds needed to achieve a certain level of power.
However, their procedure is limited to two groups.

Moerbeek et al. (2000 Table 2) offer convenient closed-form solutions to obtain the op-
timal numbers of units in the context of two- and three-level designs. These equations are
only applicable for some designs. For example, the equation for the solution to n1 given in
Moerbeek et al. (2000 Table 2, for two levels, and randomization at the class level) is not
general enough to provide an optimum for n1 in (3) above.

Because of the work of researchers such as Glass (1976), Hedges (1981) and Cohen
(1988), some methodologists (e.g. Kirk, 1996; Rosenthal, Rosnow & Rubin, 2000) are more
concerned with the study and reporting of effect sizes — such as those related to σ2

r+1 in (1).
Further, effect sizes are available to the investigator (or can be estimated) at the initial stages
of formulating a budget and selecting an appropriate experimental design (see e.g. Howell,
2002 p .228).

2. Purpose of the study

In view of the above, what is needed is a general procedure that estimates the amount
of adjustment to a budget necessary to bring power to a targeted level. More specifically, the
purposes of the study are to (a) derive a procedure using Lagrange multipliers to determine
the optimal numbers of units for multi-level designs with desired power targets, (b) provide
more general closed form formulae than previous researchers (Moerbeek et al., 2000) to en-
able the determination of optimal numbers of units for studies that involve complex designs,
and (c) provide a method that optimizes multi-level designs when the estimates of variance
components are unavailable. Case studies demonstrate the proposed procedure.

3. Mathematical development

3.1. When estimates of the variance components are available

We assume a balanced r-level design with fixed treatment conditions and where random
allocation is carried out at one level. It is also assumed that there is one hypothesis of inter-
est, the test of significance associated with the variance component σ2

r+1 in (1). As such, if
randomization is performed at level i then σ2

0 consists of a linear combination of i variance
components.

Given these assumptions, let (1) be expressed as

R = σ2
1 + ∑r

i=1 pi
( ∏i

j=1 nj
)
σ2
i+1

σ2
1 + ∑r−1

i=1 pi
( ∏i

j=1 nj
)
σ2
i+1

, (5)

where p1, . . . , pr−1 are non-negative integers, and pr is a positive integer. Similar to the role
of m in (1), the pi are symbols denoting the total magnitude associated with their respective
variance component σ2

i+1 . The terms n1, . . . , nr are the variables of concern to be selected
in such a manner that R is maximized subject to a budget constraint.

It can be shown that (3) is a special case of (5) when randomization is performed at the
second level. With r = 2, (5) would appear as

R = σ2
1 + p1n1σ

2
2 + p2n1n2σ

2
3

σ2
1 + p1n1σ

2
2

. (6)
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Table 1

Solutions for n∗
i and λ∗ in the context of two-level designs

Level n∗
i

λ∗
randomized

1
B − q2c2n2

q1c1n2

p2σ
2
3

(σ1
√
q1c1 )

2

2
Bσ2

√
p1

σ1
√
q1q2c1c2 + σ2q2c2

√
p1

p2σ
2
3

(σ1
√
q1c1 + σ2

√
p1q2c2 )

2

Setting p1 = p2 = 2 gives (3). If randomization were performed at the first level then setting
p1 = 0 and p2 = 2 in (6) would give the appropriate expression for R as

R = σ2
1 + 2n1n2σ

2
3

σ2
1

.

We suppose the total finite budget B associated with (5) is

B =
r∑

i=1

ciqi

r∏
j=i

nj , (7)

where ci represents the price per unit of ni and the qi are fixed positive integers such that the
term qi

∏r
j=i nj gives the total number of units in the design for level i. Thus, the i th product

term in (7) ciqi
∏r

j=i nj represents the total cost of level i.
Equations (5) and (7) can be combined to give the Lagrangean

L(n1, . . . , nr, λ) = f (n1, . . . , nr) + λ
(
B − g(n1, . . . , nr)

)
, (8)

where λ is the Lagrange multiplier and R = f (n1, . . . , nr) is the objective function from (5)
that is maximized with respect to n1, . . . , nr subject to B = g(n1, . . . , nr) in (7) for fixed
values of σ2

1 , σ
2
i+1 , ci , pi and qi for i = 1, . . . , r.

If randomization is performed at level r in the design, then the optimal solutions for
n∗

1, . . . , n
∗
r and λ∗ are expressed as follows (see the Appendix):

n∗
1 = σ1

σ2

√
q2c2

p1q1c1
, (9)

n∗
i = σi

σi+1

√
pi−1qi+1ci+1

piqici
for i = 2, . . . , r − 1 , (10)

n∗
r = Bσr

√
pr−1

σ1
√
q1qrc1cr + ∑r−1

i=2 σi
√
pi−1qiqrcicr + σrqrcr

√
pr−1

, (11)

λ∗ = prσ
2
r+1(

σ1
√
q1c1 + ∑r

i=2 σi
√
pi−1qici

)2 , (12)

where λ∗ represents the increase in f (n∗
1, . . . , n

∗
r ) given a one-unit increase in B.
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Table 2

Solutions for n∗
i and λ∗ in the context of three-level designs

Level n∗
i

λ∗
randomized

1
B − q2c2n2n3 − q3c3n3

q1c1n2n3

p3σ
2
4

(σ1
√
q1c1 )

2

2
σ2

√
p1 (B − q3c3n3 )

σ1n3
√
q1q2c1c2 + σ2q2c2n3

√
p1

p3σ
2
4

(σ1
√
q1c1 + σ2

√
p1q2c2 )

2

3
Bσ3

√
p2

σ1
√
q1q3c1c3 + σ2

√
p1q2q3c2c3 + σ3q3c3

√
p2

p3σ
2
4

(σ1
√
q1c1 + σ2

√
p1q2c2 + σ3

√
p2q3c3 )

2

Suppose random allocation is carried out at the i th level where 1 ≤ i ≤ r − 1. In this
situation, n∗

i is obtained by substituting fixed integers for ni+1, . . . , nr and i − 1 equations
from (9) and (10) into (7) and then solving for n∗

i . Tables 1 and 2 give the formulae for the
optimal solutions of n∗

i and λ∗ for two- and three-level designs. The extension of these results
to larger designs is shown by the structure of the formulae.

The solutions of n∗
i require that they be integers. However, (9), (10) and (11) in general

do not yield such numbers. Therefore, the following rule for rounding (Cameron, 1951) is
used with respect to (9) and (10): if ni are positive integers such that ni < n∗

i < ni + 1,
round up if n∗

i
2
> ni(ni + 1); otherwise round down. If randomization is performed at level

i, then n∗
i should be rounded in such a manner that the realized budget does not exceed the

initial budget estimate.

3.2. Targeting levels of power

Assume that random allocation is carried out at the i th level in an r-level design. It is
possible that n∗

i may yield an undesirable level of power because of an inappropriate value
of B in (7). As a result, we define ñ∗

i as the integer number of units yielding a targeted
level of power π∗ that is at least as large as a prespecified power threshold point π0 . More
specifically, π∗ is defined to be an element on the interval

0 < πa < π0 ≤ π∗ < πb < 1 , (13)

where πa and πb are associated with ñ∗
i − 1 and ñ∗

i + 1 units, respectively. Both πa and πb
are considered undesirable levels of power because πa falls below π0 and πb is at the point
where the cost of an additional unit beyond ñ∗

i exceeds the gain in power.
To determine the amount of change to the initial realized budget �B such that power is

at π∗ , an estimate of R in (5) is first obtained. This estimate is computed as

R̂ = σ̂2
1 + ∑r

i=1 pi
( ∏i

j=1 n
∗
j

)
σ̂2
i+1

σ̂2
1 + ∑r−1

i=1 pi
( ∏i

j=1 n
∗
j

)
σ̂2
i+1

. (14)

Second, the point on a non-central F distribution that yields π0 in (13) is obtained as

F0 = 1 + δ0

k
, (15)
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where the non-centrality parameter δ0 is a function of the required power π0 and is determined
from (A6) in the Appendix. Using (14) and (15), �B is then determined as

�B = F0 − R̂

λ∗ . (16)

To obtain an integer solution for ñ∗
i we relate the following inequality to (13) as

B0 = B + �B < B∗ = B + (ñ∗
i − n∗

i )
∂B

∂n∗
i

< Bb = B + (
(ñ∗

i + 1) − n∗
i

) ∂B
∂n∗

i

, (17)

where B∗ is the budget selected and is associated with power π∗ .

3.3. When estimates of the variance components are unavailable

In the absence of estimates of the variance components an approach the experimenter
can take is to ask what would be a minimum effect size worth detecting. Using Cohen’s
(1988 p .274) definition of a standardized effect size f and a minimum value of σ2

r+1 , the
component σ2

1 in (5) can be determined as

σ2
1 = σ2

r+1

f 2 =
∑

τ2
j

/
k

f 2 , (18)

where
∑

τ2
j /k is defined as in (3) and (4).

A useful contribution from Brooks (1955 Table 1) is the pilot study that demonstrated
the wide range of values that n1 may take and still maintain at least 90% precision of the true
optimum n∗

1 in (9). Commenting on Brooks (1955), Cochran (1977 p .282) noted:
Because of the flatness of the optimum, these [variance component] ratios need not be
obtained with high accuracy . . . the wide interval between the lower and upper limits [that
maintain 90% precision] is striking in nearly all cases

Similar points were also made by Moerbeek et al. (2000 p .278) on the flatness of the optimal
solutions.

In view of this, it is convenient to estimate variance components in the manner suggested
by Cochran (1977 p .282) as

σ2
i

σ2
i+1

= 1 − ρi+1

ρi+1
for i = 1, . . . , r − 1 , (19)

where ρi+1 is the intra-class correlation between the elements of level i+1. Estimates of
ρi+1 can be obtained from studies that report reliability estimates. For example, reliability
coefficients such as KR-21 (Allen & Yen, 1979 p .84) are often reported on instruments that
take duplicate or repeated measures. Otherwise, if other intra-class correlations are unknown,
the interval considered for estimating the variance components is ρi+1 ∈ [0.05, 0.50]. Values
of ρi+1 outside this interval are considered unusually low or high intra-class correlations
(Cochran, 1977 p .282). Values of ρi+1 are often related to the size of the unit being con-
sidered, e.g. larger units are usually associated with smaller values of ρi+1 . Substituting the
estimates for ρi+1 and σ2

i into (19) and solving for σ̂2
i+1 gives

σ̂2
i+1 = σ̂2

i ρ̂i+1

1 − ρ̂i+1
for i = 1, . . . , r − 1 . (20)
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Table 3

Summary of a two-level design when the estimates of the variance components
are available from a dataset. Randomization is at the second (animal) level.

1. Cost for each repeated measure: c1 = $5.
2. Cost for each animal to enter the experiment: c2 = $100.
3. Initial budget estimate: B = $5250.
4. Variance components: σ̂2

1 = 0.01908, σ̂2
2 = 0.00698, σ̂2

3 = 0.00244.
5. Values of k, pi and qi: k = 3, p1 = 4, p2 = 4, q1 = 12, q2 = 3.
6. Optimal integer solutions: n∗

1 = 2, n∗
2 = 12.

7. Degrees of freedom: υ1 = k − 1 = 2, υ2 = k(n∗
2 − 1) = 33.

8. Realized budget: B = $5040.
9. Minimum power threshold point π0 in (13): π0 = 0.80.

10. Critical Z from the N(0, 1) distribution associated with π0 : Z = −0.84.
11. Critical value from the central Fυ1,υ2 distribution: F0.05,2,33 = 3.28.
12. Non-centrality parameter from (A6) and (A7): δ0 = 10.41.
13. Estimate of (14): R̂ = 4.13.
14. Point on the non-central Fυ1,υ2,δ0 distribution that yields π0 in (15) F0 = 4.47.
15. Lagrange multiplier (Table 1): λ∗ = 0.000622.
16. Required change to the realized budget in (16): �B = (F0 − R̂)/λ∗ = $547.
17. Budget associated with π0 in (17): B0 = B + �B =$5587.
18. Value of ∂B/∂n∗

2 in (17): c1q1n
∗
1 + c2q2 = $420.

19. Selected budget in (17) and associated with power of π∗ in (13):
B∗ = B + (ñ∗

2 − n∗
2)(∂B/∂n

∗
2) = $5040 + (14 − 12)($420) = $5880.

4. Case studies

4.1. When estimates of the variance components are available

Consider a two-level design where a researcher is formulating a budget to study the effect
of conditioned suppression on animal behaviour. Of interest to the researcher is the F test
for differences between groups. The experimenter has data from a repeated measures design
with three factors as reported by Howell (2002 pp .502–508) that was used to study the effects
of conditioned suppression on three groups of rats.

The researcher wants to give n1 repeated measures across four different cycles to each
of n2 animals in three groups. Suppose the experimenter estimates an initial budget of B =
$5250 and wants a power level of at least π0 = 0.80. Table 3 gives a summary of the steps
for determining the optimal solutions for this experiment. The variance component estimates
were obtained from the dataset using MINITAB (2000). As indicated in Table 3, the optimal
solutions are n∗

1 = 2 repeated measures and ñ∗
2 = 14 animals for each group. This requires

the initial budget to be increased to B∗ = $5880 to achieve the targeted power level π∗ in (13).

4.2. When estimates of the variance components are unavailable

Consider a three-level design where subjects are randomly assigned to either an experi-
mental or a control group. The design consists of taking n1 duplicate measures for each of
n2 repeated measures on n3 subjects from each group. Suppose it is considered meaningful
to detect a difference of 20 units between a new treatment intervention and the standard treat-
ment, with power of at least π0 = 0.90. Using (18) and Cohen’s (1988 p .274) estimate of a
medium effect size f = 0.50 gives σ̂2

1 = 400 = ( 1
2 (100 + 100))/0.25.

Assume from prior research that the instrument used to take duplicate measures has
good reliability, ρ̂2 = 0.80. The experimenter uses an estimate of ρ̂3 = 0.25 which is the
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Table 4

Summary of a three-level design when the estimates of the variance components
are not available from a dataset. Randomization is at the third (subjects) level

1. Cost for duplicating each measure: c1 = $10.
2. Cost for each repeated measure: c2 = $50.
3. Cost for training each subject: c3 = $100.
4. Initial budget estimate: B = $12 500.
5. Variance components: σ̂2

1 = 400, σ̂2
2 = 1600, σ̂2

3 = 533.33, σ2
4 = 100.

6. Values of k, pi and qi: k = 2, p1 = p2 = p3 = 1, q1 = q2 = q3 = 2.
7. Optimal integer solutions: n∗

1 = 1, n∗
2 = 3, n∗

3 = 22.
8. Degrees of freedom: υ1 = k − 1 = 1, υ2 = k(n∗

3 − 1) = 42.
9. Realized budget: B = $12 320.

10. Minimum power threshold point π0 in (13): π0 = 0.90.
11. Critical Z from the N(0, 1) distribution associated with π0 : Z = −1.28.
12. Critical value from the central Fυ1,υ2 distribution: F0.05,1,42 = 4.07.
13. Non-centrality parameter from (A6): δ0 = 10.78.
14. Estimate of (14): R̂ = 2.83.
15. Point on the non-central Fυ1,υ2,δ0 distribution that yields π0 in (15): F0 = 6.39.
16. Lagrange multiplier (Table 2): λ∗ = 0.000150.
17. Required change to the realized budget in (16): �B = (F0 − R̂)/λ∗ = $23 733.
18. Budget associated with π0 in (17): B0 = B + �B = $36 053.
19. Value of ∂B/∂n∗

3 in (17): c1q1n
∗
1n

∗
2 + c2q2n

∗
2 + c3q3 = $560.

20. Selected budget in (17) and associated with power of π∗ in (13):
B∗ = B + (ñ∗

3 − n∗
3)(∂B/∂n

∗
3) = $12 320 + (65 − 22)($560) = $36 400.

approximate midpoint of the intra-class correlation interval considered above. It follows from
(20) that the variance component estimates are σ̂2

2 = 1600 and σ̂2
3 = 533.33.

Suppose the researcher estimates an initial budget of B = $12 500. Table 4 summarizes
the information for this experiment and the steps to follow for determining the optimal number
of units for this design. As Table 4 shows, the required budget is B∗ = $36 400 for n∗

1 =
1 measure for each of n∗

2 = 3 repeated measures on each of ñ∗
3 = 65 subjects in each

group. Thus, the initial budget estimate was approximately one-third of the budget necessary
to achieve the targeted level of power π∗ .

In practice, when the variance components are a priori unknown, it is prudent to take an
approach that provides a conservative estimate of R̂ in (14). The consequence of this approach
is that a larger budget is needed to ensure a minimum targeted level of power is achieved.

5. Conclusion

The proposed procedure determines the efficient allocation of resources in the context
of multi-level designs. Specifically, given a fixed budget, various prices, and estimates of the
variance components for a design, the Lagrange multiplier method locates the point where the
ratio of expected mean squares is at a maximum.

The procedure presented simplifies the Overall & Dalal (1965) procedure for determin-
ing optimal solutions to the extent that there is no need to list all possible combinations of
potential solutions. The example and discussion in Overall & Dalal (1965) on the special
‘zero-overhead’ case for a simple repeated measures design is also subsumed under the pro-
posed method. That is, if there is no cost associated with each subject (i.e. c2 is arbitrarily
close to zero in Table 1), then each subject is tested once and the design uses as many subjects
as the budget allows.
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The case studies examined show that the procedure enables the researcher to estimate the
amount of funds needed to adjust power to a desired level. Using effect sizes and Lagrange
multipliers the method provides the researcher with the appropriate information to formulate
an accurate budget.

Appendix

A.1. Derivation of the optimal solutions

Substituting (5) and (7) into (8) yields

L = σ2
1 + ∑r

i=1 pi
( ∏i

j=1 nj
)
σ2
i+1

σ2
1 + ∑r−1

i=1 pi
( ∏i

j=1 nj
)
σ2
i+1

+ λ

(
B −

r∑
i=1

ciqi
∏r

j=i nj

)
. (A1)

The partial derivatives of (A1) with respect to λ and ni are expressed as

∂L

∂λ
= 0 = B −

r∑
i=1

ciqi
∏r

j=i nj , (A2)

∂L

∂ni
= fni − λgni = 0 =

∑r
i=1 ∂ni

(
pi

( ∏i
j=1 nj

)
σ2
i+1

)
σ2

1 + ∑r−1
i=1 pi

( ∏i
j=1 nj

)
σ2
i+1

−
( ∑r−1

i=1 ∂ni

(
pi

( ∏i
j=1 nj

)
σ2
i+1

))(
σ2

1 + ∑r
i=1 pi

( ∏i
j=1 nj

)
σ2
i+1

)
(
σ2

1 + ∑r−1
i=1 pi

( ∏i
j=1 nj

)
σ2
i+1

)2

− λ

r∑
i=1

∂ni

(
ciqi

∏r
j=i nj

)
,

(A3)
for all i = 1, . . . , r. Solving the r equations in (A3) for λ gives

λ = fn1

gn1

= · · · = fnr

gnr

. (A4)

Sequentially solving fni/gni − fni+1
/gni+1

= 0 for ni , where i = 1, . . . , r − 1, gives the
closed-form formulae for n∗

i in (9) and (10). The r − 1 expressions on the right-hand sides
of (9) and (10) are subsequently substituted into (A2) and (A4) to obtain the equations for n∗

r

and λ∗ in (11) and (12).
It is only necessary to satisfy the first-order conditions because it can be shown that

the objective function R in (A1) is explicitly quasiconcave. This implies that evaluating R

at n∗
i for i = 1, . . . , r is an absolute constrained maximum. To show that R is explicitly

quasiconcave we must have (Chiang, 1984 p .398)

R(v) > R(u) ⇒ R
(
θu + (1 − θ)v

)
> R(u) , (A5)

where 0 < θ < 1, and where v = (n∗
1, . . . , n

∗
r ) and u = (n∗

1, . . . , n
∗
r ) are distinct arbitrary

vectors from the convex domain of R. By inspection of (5), the conditions in (A5) must hold
because σ2

1 , . . . , σ
2
r+1 , n∗

1, . . . , n
∗
r and pr are all positive, p1, . . . , pr−1 are non-negative,

and the constraint set in (A2) is convex because it is a linear equation.
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A.2. Calculation of the non-centrality parameter

The value of F0 in (15) is based on the following expression (Winer, Brown & Michels,
1991 p .136):

z0 =

√
(2υ2 − 1)

υ1Fα,υ1,υ2

υ2
−

√
2(υ1 + δ) − υ1 + 2δ

υ1 + δ√
υ1Fα,υ1,υ2

υ2
+ υ1 + 2δ

υ1 + δ

, (A6)

where z0 is a critical value from the N(0, 1) distribution, δ is the non-centrality parameter,
and Fα,υ1,υ2

denotes the (1−α)-quantile of the central F distribution with υ1 and υ2 degrees
of freedom.

If F is distributed as the Fυ1,υ2,δ
distribution, then Pr(F > Fα,υ1,υ2

) ≈ Pr(z > z0).

Setting z0 in (A6) to the value associated with π0 in (13) and solving for δ gives δ0 . Because
δ0 is of the form in (2) it follows that F0 = 1 + δ0/k which appears in (15).

For example, consider the first case study with degrees of freedom υ1 = 2, υ2 = 33 and
a critical point F0.05,2,33 = 3.28. Because π0 = 0.80 in (13) we set z0 = −0.84. Substituting
these values into (A6) gives

−0.84 =

√(
2(33) − 1

) (2)(3.28)

33
−

√
2(2 + δ) − 2 + 2δ

2 + δ√
(2)(3.28)

33
+ 2 + 2δ

2 + δ

. (A7)

Solving (A7) for δ, using the equation solver FindRoot (Wolfram, 1999), gives δ0 = 10.41.
From (15) and with k = 3 we have F0 = 1 + 10.41/3 = 4.47.
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