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Abstract

In many testing situations the use of parallel forms or
test-retest reliability coefficients is impractical.  Viable
alternatives to these approaches are the internal consistency
coefficients.  One of the most commonly used internal consistency
coefficients is Cronbach�s coefficient alpha.  The purpose of
this paper is to discuss the robustness of coefficient alpha.  To
begin, I will provide a derivation of coefficient alpha. In the
process of the derivation, I will try to provide insight into
alpha's potential robustness.  The paper will close with a
simulation algorithm for studying alpha�s robustness.
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1.0 Introduction

When resarchers require an estimate of reliability of their

measurements (either test or scale reliability), parallel forms

and test-retest approaches are often impractical.  Coefficient

alpha is often the reliability estimate of choice.  Conceptually,

coefficient alpha is the mean of all possible split-half

correlations and estimates the lower bound1 of the reliability. 

Alpha can be used for both dichotomous and ordered polytomous

data and requires only one test administration.  Without lack of

generality, only the polytomous case will be considered in this

paper.

2.0 Yet Another Derivation of Coefficient Alpha

Coefficient alpha can be derived in various ways, for

example, derivations based on an ANOVA approach, a composite

measures approach, or through linear operators and Hilbert space.

For this study, the derivation based on composite measurements

will be used.  The derivation that follows is based on Novick and

Lewis (1967).

The observed test score model in classical test theory is

expressed as:

(1)                                                                       E + T = X

where X is the observed score, T is the true score, and E is the

measurement error score.  Recall that the true score is the

expected value of the propensity distribution.  With this model

it is assumed that the measurement error scores for an examinee

are uncorrelated with that individual's true scores, the item

error scores are uncorrelated, and the measurement error scores

are expected to sum to zero over the population of examinees.

                    
1  A lower bound is a value that must be smaller than the

reliability coefficient.  That is, the reliability coefficient must
be at least as big as the value for alpha.
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The reliability can be expressed as

(2)                                                               
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 denotes the variance of the composite true score and

σ C
2 denotes the variance of the composite observed test score or

the variance of the sum of k parallel subtest scores (without

restriction on the results the subtests can also represent

items).

If all k parallel measures have equal true score variances

and equal true score covariances where by definition the true

score variance equals the sum of the elements of the k X k matrix

of true score variances and covariances, then:
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However, when the k subtests are not strictly parallel then
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For nonparallel subtests at least one subtest (in this case

subtest g) has a true score variance which is greater than or

equal to its covariance with any other subtest.  But for any two
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subtests that are not strictly parallel the sum of their true

score variances is greater than or equal to twice their

covariances,
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In addition, with nonparallel subtests, the sum of k true

score variances will be greater than or equal to the sum of  

k(k-1) covariances divided by (k-1).  This can be denoted as

(8)                j). (i  ,
1-k

)T,T(

    
ji

k

1=j

k

1=i
T

2
i

≠
∑∑

≥∑
σ

σ

When the sum of the covariances is added to each side

of the equation then,
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As seen in equation 3, the variance of the true score composite

equals the sum of the variances of the true scores plus the sum

of the covariances of the true scores.  Therefore, equation (9)

can be expressed as:
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≠∑∑ σ  is the sum of k(k-1) covariances of non

parallel subtests.
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If both sides of equation (11) are divided by the variance

of the composite then
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This is reliability since, by definition, reliability is the

ratio of true score variance to observed score variance.

Since the true score covariance equals the observed score

covariance,
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In addition, it can be shown that the observed score variance

equals the sum of the covariances and the item variances. 

Therefore,
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Hence, coefficient alpha is the lower bound estimate of

reliability.

3.0  Assumptions Underlying Coefficient Alpha

For the purposes of this study, the underlying assumptions

of coefficient alpha can be categorized as assumptions underlying

the derivation of alpha and assumptions underlying the estimation

of alpha.  A discussion of these categories follows.
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3.1  Assumptions Underlying the Derivation

Derivations of coefficient alpha, such as the derivation of

Lord & Novick (1967), used a classical test theory approach to

the derivation.  This method does not assume a normal observed

score distribution.  However, an ANOVA approach to the derivation

of coefficient alpha, such as the derivation presented by Feldt

(1965), involves the assumptions of ANOVA which include

normality.  The assumptions underlying the derivation also

include additivity (Novick & Lewis, 1967; Lord & Novick, 1968;

Zimmerman, 1969; Zimmerman, Zumbo, & Lalonde, 1993).  Additivity

means that the matrix of true scores must be additive in nature.

Zimmerman, Zumbo, and Lalonde (1993) found that violation of

the assumptions of uncorrelated errors between subtests and

additivity resulted in a greater variability of the estimator. 

When additivity was violated, alpha underestimated the

reliability.  However, when the uncorrelated errors assumption

was violated, alpha overestimated the reliability.

3.2  Assumptions Underlying the Estimation

Although normality is not an assumption of the derivation of

coefficient alpha presented above, it is an assumption of the

estimation of coefficient alpha.  The assumptions of estimation

stem from least squares estimation.  As seen above, coefficient

alpha is a function of sample variances and covariance. 

Therefore, the assumptions of least-squares estimation, which

include normality, apply to coefficient alpha. Future research

should investigate how nonnormal error score distributions affect

the estimation of the population reliability using coefficient

alpha.

Commonly used approaches to most problems in classical test

theory are based on statistics that are not robust or resistant

to nonnormality.  The terms "robust" or "resistant" are defined

as insensitivity to changes in the underlying distribution
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(Huber, 1981; Mosteller & Tukey, 1977).  For example, the

variance is not robust or resistant to nonnormality since small

deviations from normality can greatly affect its value (Lind &

Zumbo, 1993; Shoemaker & Hettmansperger, 1982).  Consequently,

Lind and Zumbo (1993) called for the investigation of the

robustness or resistance of measures from classical test theory,

such as coefficient alpha, to nonnormal data.  A recent study by

Wilcox (1992), developed a new measure of reliability which is a

robust analogue of coefficient alpha.  Wilcox (1992) derived this

analogue based on the assumption that coefficient alpha is not

robust to even slightly nonnormal observed score distributions. 

However, the robustness of coefficient alpha has not been studied

in depth.

To the author's knowledge very little empirical or

analytical research has been conducted to investigate the

violation of the normality assumption underlying the estimation

of coefficient alpha.  As indicated in the review by Feldt,

Woodruff, and Salih (1987), a sampling theory of coefficient

alpha would allow researchers to obtain an unbiased estimate of

the population value, to establish confidence intervals for

coefficient alpha, and to determine if coefficient alpha has a

specific value for a given population.

The exact sampling distribution for coefficient alpha has

not yet been determined.  However, a transformation of

coefficient alpha has been derived independently by Feldt (1965)

and Kristof (1963).  This transformation was based on an ANOVA

derivation and has been proven to be distributed as an F

distribution.  Therefore, assumptions of least squares

estimation, including normality, apply.  In other words, if a

normal distribution of observed scores is used, a transformation

of coefficient alpha can be used to determine confidence

intervals or to test hypotheses.  The transformation of

coefficient alpha is:
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α  tcoefficien - 1

yreliabilit population - 1
.

Based on this transformation, Feldt et al. (1987) stated

that coefficient alpha would tend to underestimate the population

reliability and would be a biased estimator when the number of

examinees is small (e.g. n = 50).

Feldt et al. (1987) presented a formula that would give an

unbiased estimate of the population reliability:

1. - N / 2 +1)]  - (N /  3) - [(N α

Bay (1973) also derived coefficient alpha using a mixed

model ANOVA approach.  He also derived the same transformation

equation that was presented by Feldt (1965).  Based on these

derivations, Bay (1973) suggested that the sampling distribution

of the reliability estimate would be robust against the violation

of the normality assumption if (a) large numbers of examinees are

used, (b) the reliability is close to zero, or (c) a large number

of subtests is used and the true score or test score kurtosis is

close to zero. 

Bay (1973) also performed a Monte Carlo computer simulation.

 The simulation involved 30 examinees and eight subtests with

2000 replications.  Six different true score distributions were

used:  normal, uniform, exponential, the sum of two independent

uniform distributions, the sum of three independent uniform

distributions and the sum of six independent uniform

distributions.  In addition, three different error score

distributions were used, the normal, exponential, and uniform. 

The means, variances, and the mean squared errors of the alphas

were obtained.  The results of the computer simulation allowed

Bay to conclude that a leptokurtic true score distribution could

cause coefficient alpha to seriously underestimate the population

reliability, and the effect of nonnormality of error score

distributions is negligible when a large number of subtests is
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used.

A small component of Zimmerman, Zumbo, and Lalonde (1993)

involved the estimation of coefficient alpha under a more general

test score model than Bay.  Forty examinees, ten subtests, and

2000 replications were used.  The error score distributions used

were the normal, uniform, exponential, and the mixed-normal. 

Reliability values of 0.65, 0.75, and 0.90 were used.  Based on

these parameters, Zimmerman et al. (1993) found that coefficient

alpha was unbiased and its efficiency did not change over the

distributions.

One difference between Bay (1973) and Zimmerman et al.

(1993) should be noted.  Bay (1973) varied the true score and the

error score distributions while Zimmerman et al. only varied the

error score distributions.

To date it has been shown that a transformation of

coefficient alpha is distributed as a F distribution.  This

transformation is based on the assumption of normally distributed

observed scores.  Therefore, this transformation can only be used

for hypothesis testing and to determine confidence intervals when

the underlying observed score distribution is normal.  In

addition, the sampling distribution of coefficient alpha is

unknown.  If the sampling distribution of coefficient alpha were

known, confidence intervals could be calculated from the data and

hypotheses could be tested directly.  This is similar to the

commonly found discussion of computing confidence intervals of

the mean based on the z-distribution. 

Not only is the sampling distribution of coefficient alpha

unknown, but also, the affects of nonnormality on the estimation

of coefficient alpha have only been preliminarily tested by Bay

(1973) and Zimmerman et al. (1993).  Both Bay (1973) and

Zimmerman et al. suggest that under certain conditions the

estimation of reliability is robust.  These conclusions are

restricted, however, to the very limited parameters investigated.
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 The effects of nonnormality with various numbers of examinees,

numbers of subtests, and population reliabilities have not been

examined.

4.0 A Simulation Model

In the simulation model, the error scores of a given person

over replications were distributed according to the various

distributions.  This implied that for any given replication, the

error scores over examinees are distributed in the same way.  The

distributional shape, as in all simulation studies, needs to

chosen to both represent a wide variety of conditions and

parameters of interest (e.g., skewness and kurtosis, or outlier

contamination) but also with a consideration of limitations based

on what could be reasonably found in the practise of

psychometrics.

The following algorithm would help us investigate the

robustness:

Step 1: The population reliability, the number of subtests, and

the number of examinees, as well as the error score

distribution are input into the algorithm as constants.

Step 2: A true score matrix was created so that the assumption

of additivity was met.  The true score matrix was

created by constructing a matrix with test items on one

axis and examinees on the other axis and adding the

respective terms.  In this way the true score

distribution was uniform.  Table 3 is an example of an

additive true score matrix. 
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Table 3

Example of An Additive True Score Matrix

Examinee

Number

Item

Number

1 2 3 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8

Step 3: The mean true score and its variance are calculated. 

Then using an error distribution with a mean of zero,

independent error scores from the specified

distribution are selected and added to the true score

items.  The variance of the error distribution is

initially set to one and is then modified so that a

specified reliability could be achieved.

Step 4: Coefficient alpha is calculated.

Step 5: The selection of an independent error score and the

calculation of coefficient alpha are repeated to

achieve 1000 replications.

Step 6: The mean, variance, mean squared error, skewness, and

kurtosis of coefficient alpha over the 1000

replications are calculated.  The 0.95 confidence

interval of the mean is also calculated.  The variance

calculated is the variance from the sample mean of
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coefficient alpha while the MSE is the averaged squared

deviation from the population value of alpha.

The simulation model (algorithm) is an adaptation of the

methodology used in Zimmerman et al. (1993).  It is important to

note that given the model in Zimmerman et al. (1993) the

distribution of observed scores over replications has the same

shape as the distribution of error scores over replications. 

Finally, in these simulations, the additivity and uncorrelated

error assumptions were satisfied.

The methodology discussed herein is different than the

methodology used by Bay (1973).  Bay (1973) varied both the true

score and the error score distribution.  The present simulation

model only varies the error score distribution while the true

score distribution remains uniformly distributed.  It can be

clearly seen by examining Table 3 that the total score across the

four items is uniformly distributed for that sample.

A copy of this or other such papers can be found at
the Edgeworth Laboratory for Quantitative Behavioral
Science web site.

http://quarles.unbc.ca/psyc/zumbo/edgeworth2.html
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