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Abstract.  Differential item functioning (DIF) methods have been extensively studied for large-
scale testing contexts; however, little to no attention has been paid to moderate-to-small-scale 
testing contexts. We describe moderate-to-small-scale testing as involving 500 or fewer 
examinees per group and, typically, less than 50 items in a test or scale.  This is the sort of 
measurement work that is most often found in educational Psychology research, small or non-
repeating surveys, pilot studies, and in some large college classes of introductory courses (e.g., 
introductory psychology).  We describe a statistic (beta) based on nonparametric item response 
theory as well as: (a) a formal hypothesis test of DIF based on the assumed sampling 
distribution of beta, and (b) a hypothesis testing strategy that does not use a sampling 
distribution, per se, but rather a cut-off value for testing for DIF. We report two simulation 
studies. In the first simulation study we investigate beta’s standard error and hence operating 
characteristics.  We found that although the beta DIF statistic produced by the nonparametric 
IRT software TestGraf is unbiased, the standard error of that statistic is negatively biased 
resulting in an inflated Type I error rate. Likewise, the Roussos-Stout cut-offs for beta produced 
inflated Type I error rates.  Given that the formal test and Roussos-Stout’s cut-offs resulted in an 
inflated Type I error rate, new cut-offs values are proposed based on our simulation results. In 
the second study statistical power from using these new cut-off values for beta are compared to 
the power of using the Mantel Haenszel (MH) DIF statistic. We found that the procedure based 
on the new cut-off values had substantially more power than the MH.  
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� Differential item functioning (DIF) methods have 
been extensively studied for large-scale testing 
contexts; however, little to no attention has been paid 
to moderate-to-small-scale testing contexts. 

� Although there are both IRT and non-IRT DIF 
detection methods available it is reasonable to note 
that the development of DIF was greatly influenced 
by several historical forces, e.g.,:
� The focus on the �item� as the psychometric unit of 

analysis; and the development of IRT
� Development of large-scale testing programs primarily in 

the educational (achievement) testing context. 
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� The forces pushed our focus on 
� long tests (so that we can estimate theta in IRT models) and 
� large sample sizes (in the thousands; a natural feature of 

large-scale testing and also allowed us to estimate item and 
person parameters in the IRT models).
! For example, math assessments in grade 9, 125 items, 

completed every year by 2000 examinees.

� It is not surprising, then, that there has been a focus on 
large-scale measurement with little attention on 
moderate-to-small scale testing.

Introduction to the Problem
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� We describe moderate-to-small-scale testing 
as involving 500 or fewer examinees per 
group and, typically, less than 50 items in a 
test or scale (Witarsa, 2003).  

� This is the sort of measurement work that is 
most often found in educational Psychology 
research, small or non-repeating surveys, 
pilot studies, and in some large college 
classes of introductory courses (e.g., 
introductory psychology).

Introduction to the Problem
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� Two broad classes of DIF detection methods
� Modeling contingency tables or modeling logistic regression 

models
� IRT methods

� The essential difference is the �what� and �how� the 
matching or conditioning is performed.

� The regression approaches typically condition on the 
observed score and act like �ANCOVA� approaches. In 
addition, a limitation is the errors-in-variables problem 
which would be exasperated in the case of short scales.

� That is, the IRT methods �condition� on the latent 
variable; actually they integrate the latent variable out of 
the problem by, in essence, focusing on the area 
between the item response functions.  

Why an IRT DIF method?
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� In its essence, the IRT approach is focused on determining the 
area between the curves (or, equivalently, comparing the IRT 
parameters) of the two groups. 

� It is noteworthy that, unlike the contingency table and 
regression methods, the IRT approach does not match the 
groups by conditioning on the total score. That is, the question
of "matching" only comes up if one computes the difference 
function between the groups conditionally (as in the Mantel-
Haenszel).

� Comparing the IRT parameter estimates or IRFs [item response 
functions] is an unconditional analysis because it implicitly 
assumes that the ability distribution has been �integrated out�. 
The mathematical expression �integrated out� is commonly used 
in some DIF literature and is used in the sense that one 
computes the area between the IRFs across the distribution of 
the continuum of variation, theta.

Why an IRT DIF method?
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� Two reasons:
� The interest on relatively small sample sizes and 

relatively few items in the scale or measure, made it so 
that we could not use most conventional parametric IRT 
models.

� We also wanted an approach that has a very 
�exploratory data analysis� data driven orientation 
because we had no reason to believe that the item 
response functions would be simple parametric 
functions -- such as a 1-parameter or Rasch model, 
which is sometimes recommended for moderate-to-
small-scale testign. 

� Hence, why we used Ramsay�s nonparametric IRT 
method.  

Why a nonparametric IRT method?
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� We describe a statistic (beta) based on 
nonparametric item response theory as well as: 

� a formal hypothesis test of DIF based on the assumed 
sampling distribution of beta, and 

� a hypothesis testing strategy that does not use a 
sampling distribution, per se, but rather a cut-off 
value for testing for DIF (Roussos & Stout criterion).

Hypothesis Testing IRT DIF
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� Like other IRT methods (Zumbo & Hubley, 2003),
TestGraf measures and displays DIF in the form of a 
designated area between the item characteristic curves. 
This area is denoted as beta which measures the 
weighted expected score discrepancy between the 
reference group curve and the focal group curve for 
examinees with the same ability on a particular item 
(see Ramsay 2003).

� There is a known variance of beta, and hence a 
standard error can then be used to form confidence 
bounds or compute a test statistic for the hypothesis 
test of DIF.

� The assumed distribution of that test statistic is 
standard normal.

Hypothesis Testing IRT DIF
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� With our knowledge of beta there are two approaches to 
testing the �no DIF� hypothesis.
� Perform a formal hypothesis test making use of the purported 

sampling distribution of beta (never been studied).
� A less formal hypothesis tes: Compute beta and compare its 

value to a criterion (not making use of the sampling 
distribution of beta); Roussos and Stout (1996) proposed the 
following cut-off indices: (a) negligible DIF if |β| < .059, (b) 
moderate DIF if .059 ≤ |β| < .088, and (c) large DIF if |β| ≥
.088. Gotzmann (2002) recently investigated the use of these 
cut-off indices with large-scale testing (sample sizes of 500 or 
greater per group) and found that these cut-offs result in Type I 
error rates less than or equal to 5%. In using the Roussos-Stout 
cut-offs, Gotzmann declared an item as displaying DIF if the |β| 
was greater than or equal to 0.059.

Hypothesis Testing IRT DIF
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� Little to nothing is known about the performance of 
either of the hypothesis testing strategies in 
moderate-to-small-scale testing contexts.

� We conducted two simulation studies in the context 
of moderate-to-small-scale testing:
� Study 1 was aimed at studying (a) the properties of the 

sampling distribution of the beta statistic under the null 
hypothesis of no DIF, (b) the Type I error rate of using the 
Roussos-Stout cut-off value, and (c) to allow comparison 
to a known method, we also studied the Mantel Haenszel
DIF detection method.

� Study 2. Based on the results of Study 1, a simulation 
study was conducted to compare the statistical power of 
the methods for which the Type I error rate as maintained 
at nominal levels.

Research Questions
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� Used a similar methodology as that used by Muniz, 
Hambleton, and Xing (2001).

� The following variables were manipulated in the 
simulation study:
� Sample sizes. 500/500, 200/100, 200/50, 100/100, 

100/50, 50/50, 50/25, and 25/25 examinees in pairs, 
respectively. Five of the above combinations were the 
same with that used in the study by Muniz et al. The 
additional sample size combinations, 200/100, 50/25, 
and 25/25 were included so that an intermediary 
between 500/500 and 200/50, and smaller sample size 
combinations were included. In addition, as Muniz et al. 
suggested, these sample size combinations reflect the 
range of sample sizes seen in practice in, what we would 
refer to as, moderate-to-small-scale testing.

Study 1: Methodology
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Statistical characteristics of the studied test items.
� We simulated a 40 (binary) item test using a 3-

parameter (parametric) IRT model. 
� The item parameters for the first 34 items came 

from the 1999 TIMSS math test for grade eight. 
Descriptive statistics for these items are:
discrimination: mean=.95, range= .42 � 1.59
difficulty: mean=-.03, range= -1.91 � 1.13
guessing: mean= .23, range=   .06 - .43

Study 1: Methodology
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� The last six items were the items for which 
DIF was investigated � i.e., the studied DIF 
items. The a refers to the item 
discrimination parameter, b the item 
difficulty parameter, and c the pseudo-
guessing parameter.

� The following table (next slide) lists the 
values of item parameters for the six studied 
items.

Study 1: Methodology
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Item # a b c

35 0.50 -1.00 .17

36 1.00 -1.00 .17

37 0.50 0.00 .17

38 1.00 0.00 .17

39 0.50 1.00 .17

40 1.00 1.00 .17

Study 1: Methodology

As in Muniz, Hambleton,
and Xing (2001)

two levels of the
a-parameter (0.5 and 
1)

three levels of the 
b-parameter (-1, 0, 1)

the c-parameter is 
constant at 0.17
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� Therefore, there were three factors varied in the 
simulation: (a) sample size combination, (b) item 
difficulty, and (c) item discrimination.

� The design was an 8x3x2 completely crossed 
design.

� 100 replications in each cell of the design.
� For each replication, for each of the six studied 

items the dependent variables were: (a) TestGraf�s 
beta, (b) TestGraf�s standard error of beta, and (c) 
the Mantel Haenszel statistic.

Study 1: Methodology
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� Because there were a lot of results I will summarize 
them below.
Formal Hypothesis Testing of DIF via TestGraf Beta:
� The sampling distribution of beta is, as postulated, 

Gaussian the beta produced by TestGraf is an unbiased 
estimate of the population beta even at small sample sizes, -
- i.e., the mean of the sampling distribution is the 
population value of zero under the null distribution of no 
DIF. 

� However, the standard error of beta produced by TestGraf
was smaller than it should be. Of course, this under-
estimated standard error resulted in the Type I error rate of 
the statistical test of beta (described as the formal statistical 
test above) is substantially inflated above the nominal 
levels.

Study 1: Results
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Less formal test of DIF using Beta and a cut-off
� The Roussos-Stout cut-off of |beta| < .059 for 

detecting DIF resulted in error rates, under the null 
hypothesis, as high as .37. 

� That is, under the simulated condition of no DIF, 
this cut-off approach would lead the researcher to 
declare that there is at least moderate DIF 37% of 
the time if the sample size was less than 500 per 
group. 

� For 500 examinees per group, the Roussos-Stout 
cut-off of |β| < .059 resulted in acceptable Type I 
error rates ranging from zero to three percent 
depending on the item�s discrimination and 
difficulty.

Study 1: Results
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The MH test of DIF
� The Mantel-Haeszel DIF test maintained its Type I 

error rate at or below the nominal rate.

What to do given the results?
� Because neither the Roussos-Stout cut-off nor the formal 

hypothesis test of beta maintained their Type I error rates, it 
seemed natural to compute new cut-offs for beta (in the 
context of moderate-to-small scale testing we simulated) 
based on the 90th, 95th, and 99th percentiles of the null DIF 
distribution of beta.

� These new cut-offs may replace the Roussos-Stout values for 
moderate-to-small scale testing, and particularly when one has 
less than 500 examinees per group.

Study 1: Results



20

The University of
British Columbia

Cut-off indices for β in identifying TestGraf DIF across sample size combinations and 

three significance levels irrespective of the item characteristics 

     Level of Significance α 
    ------------------------------------------------------------------------
-------- 
N 1 / N 2    .10   .05   .01 
 
500/500    .0113   .0161   .0374 

200/100    .0249   .0373   .0415 

200/50     .0460   .0540   .0568 

100/100    .0308   .0421   .0690 

100/50     .0421   .0579   .0741 

50/50     .0399   .0455   .0626 

50/25     .0633   .0869   .1371 

25/25     .0770   .0890   .1154 

 

Study 1: Results
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� Based on the results of the first study, an additional 
simulation study was conducted to investigate the 
statistical power of the DIF tests that maintain their 
Type I error rate at, or below, nominal levels. The 
simulation design for the power component was 
the same as the Type I error rate except for non-
zero population DIF.

� A comparison was made of the statistical power of 
the (a) Mantel-Haenszel, and (b) informal test of 
TestGraf�s beta against the new cut-offs from 
Study 1.

Study 2: Comparative Statistical Power
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� The design is the same as for Study, an 8x3x2 
(sample size, item difficulty, item discrimination).

� In order to study the statistical power, the non-zero 
DIF was introduced through b value differences in 
the DIF items between the two test sets for 
generating the reference and focal population 
groups. 

� Three levels of b value differences were applied: 
0.5 for small DIF, 1.0 for medium DIF, and 1.5 for 
large DIF. These are standard values seen in the 
literature.

Study 2: Methodology
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� The Appendix lists the detailed power tables for 
the two methods and for a Type I error rate of .05 
and .01.

� In all cases the statistical power of the TestGraf 
beta, using our new cut-offs appropriate for 
moderate-to-small-scale testing, is substantially 
higher. 

� The power superiority of the TestGraf beta is most 
noteworthy for the smaller sample sizes, and for 
small DIF effect size (differences in power ranging 
from .2 to .5 � this is quite noteworthy).

Study 2: Results
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� In the first simulation study we investigate TestGraf beta�s 
standard error and operating characteristics.  We found that 
although the beta DIF statistic produced by the nonparametric 
IRT software TestGraf is unbiased, the standard error of that 
statistic is negatively biased resulting in an inflated Type I 
error rate. 

� Likewise, the Roussos-Stout cut-offs for beta produced 
inflated Type I error rates.  Given that the formal test and
Roussos-Stout�s cut-offs resulted in an inflated Type I error 
rate, new cut-offs values are proposed based on our 
simulation results. 

� In the second study statistical power from using these new 
cut-off values for beta are compared to the power of using the 
Mantel Haenszel (MH) DIF statistic. We found that the 
procedure based on the new cut-off values had substantially 
more power than the MH.

Overall Summary



Nonparametric DIF 

APPENDIX 
 
Table 1. Item Statistics for the 40 Items 
 
Item # a b c  Item # a b  c  

1 1.59 0.10 .19  21 1.23 -0.43 .10 

2 0.60 -0.98 .20  22 0.73 1.13 .27 
3 0.75 -0.42 .06  23 0.54 -1.91 .23 
4 1.08 0.43 .24  24 0.71 -0.43 .31 
5 0.81 0.34 .32  25 0.66 -0.67 .16 
6 0.66 -0.57 .38  26 1.14 0.59 .18 
7 0.81 -0.18 .20  27 1.12 0.29 .26 
8 0.43 -0.36 .30  28 0.96 -0.26 .23 
9 0.94 0.45 .34  29 0.95 0.13 .15 
10 1.40 0.15 .07  30 1.38 0.66 .16 
11 0.98 -0.20 .18  31 1.38 1.11 .16 
12 1.28 -0.12 .23  32 0.42 -0.02 .20 
13 1.18 0.18 .23  33 1.04 -0.01 .30 
14 0.98 -0.63 .30  34 0.73 0.10 .13 
15 0.94 -0.14 .17  35 0.50 -1.00 .17 
16 1.39 0.94 .43  36 1.00 -1.00 .17 
17 0.78 0.25 .16  37 0.50 0.00 .17 
18 0.55 -0.82 .20  38 1.00 0.00 .17 
19 0.88 0.09 .27  39 0.50 1.00 .17 
20 1.10 0.14 .40  40 1.00 1.00 .17 
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Mantel-Haenszel POWER of DETECTING DIF at alpha = .05 
 

N/N small medium Large 
500/500  low med Hi 

Lo .95 .99 .95 
Hi .84 .94 .91 

.93  

 low med Hi 
Lo .98 1.00 .89 
Hi .88 .97 .80 

.92  

 low med Hi 
Lo 1.00 1.00 .90 
Hi .94 .96 .89 

.95  
200/100  low med Hi 

Lo .49 .63 .29 
Hi .31 .48 .35 

.43  

 low med Hi 
Lo .99 .99 .84 
Hi .93 .94 .77 

.91  

 low Med Hi 
Lo 1.00 1.00 .87 
Hi .98 .99 .83 

.95  
200/50  low med Hi 

Lo .27 .32 .15 
Hi .12 .29 .20 

.23  

 low med Hi 
Lo .85 .92 .41 
Hi .73 .74 .43 

.68  

 low med Hi 
Lo 1.00 1.00 .50 
Hi .98 .99 .79 

.88  
100/100  low med Hi 

Lo .32 .56 .26 
Hi .22 .34 .26 

.33  

 low med Hi 
Lo .93 .98 .75 
Hi .82 .88 .77 

.86  

 low med Hi 
Lo 1.00 1.00 .89 
Hi .99 1.00 .90 

.96  
100/50  low med Hi 

Lo .19 .32 .14 
Hi .10 .16 .14 

.18  

 low med Hi 
Lo .84 .85 .41 
Hi .66 .66 .39 

.64  

 low med Hi 
Lo 1.00 1.00 .45 
Hi .94 .95 .66 

.83  
50/50  low med Hi 

Lo .14 .23 .01 
Hi .14 .17 .11 

.15  

 low med Hi 
Lo .70 .72 .31 
Hi .49 .58 .38 

.53  

 low med Hi 
Lo .96 .97 .32 
Hi .86 .90 .54 

.76  
50/25  low med Hi 

Lo .03 .19 .01 
Hi .03 .06 .04 

.06  

 low med Hi 
Lo .49 .52 .04 
Hi .22 .26 .06 

.27  

 low med Hi 
Lo .82 .86 .01 
Hi .78 .67 .08 

.54  
25/25  low med Hi 

Lo .08 .12 .02 
Hi .05 .04 .03 

.06  

 low med Hi 
Lo .40 .49 .03 
Hi .22 .26 .07 

.25  

 low med Hi 
Lo .64 .46 .03 
Hi .50 .38 .05 

.34  
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TESTGRAF: Power of DIF detection for Cut-Off Beta at nominal alpha = .05 
 
N/N Small medium Large 
500/500 a\b low med Hi 

Lo .99 1.00 1.00 
Hi 1.00 1.00 100 

1.00  

 low med Hi 
Lo 1.00 1.00 1.00 
Hi 1.00 1.00 1.00 

1.00  

 low med Hi 
Lo 1.00 1.00 1.00 
Hi 1.00 1.00 1.00 

1.00  
200/100  low med Hi 

Lo .88 .96 .76 
Hi .78 .85 .83 

.84  

 low med Hi 
Lo 1.00 1.00 .98 
Hi 1.00 1.00 .94 

.99  

 low med Hi 
Lo 1.00 1.00 .99 
Hi 1.00 1.00 1.00 

1.00  
200/50  low med Hi 

Lo .80 .88 .62 
Hi .71 .79 .65 

.74  

 low med Hi 
Lo .99 .99 .84 
Hi .99 .97 .77 

.93  

 low med Hi 
Lo 1.00 1.00 .92 
Hi 1.00 1.00 .94 

.98  
100/100  low med Hi 

Lo .84 .93 .72 
Hi .77 .85 .73 

.81  

 low med Hi 
Lo .99 1.00 .94 
Hi 1.00 1.00 .90 

.97  

 low med Hi 
Lo 1.00 1.00 .95 
Hi 1.00 1.00 .97 

.99  
100/50  low med Hi 

Lo .80 .86 .60 
Hi .63 .75 .62 

.71  

 low med Hi 
Lo .98 .99 .87 
Hi .98 .96 .77 

.93  

 low med Hi 
Lo 1.00 1.00 .90 
Hi 1.00 1.00 .89 

.97  
50/50  low med Hi 

Lo .82 .90 .67 
Hi .72 .78 .67 

.76  

 low med Hi 
Lo .98 1.00 .69 
Hi .95 .95 .79 

.89  

 low med Hi 
Lo 1.00 1.00 .86 
Hi 1.00 1.00 .88 

.96  
50/25  low med Hi 

Lo .58 .72 .29 
Hi .52 .59 .31 

.50  

 low med Hi 
Lo .92 .92 .51 
Hi .89 .81 .43 

.75  

 low med Hi 
Lo 1.00 .95 .52 
Hi .92 .96 .54 

.82  
25/25  low med Hi 

Lo .60 .69 .35 
Hi .55 .61 .31 

.52  

 low med Hi 
Lo .85 .93 .44 
Hi .89 .84 .54 

.75  

 low med Hi 
Lo .98 .92 .49 
Hi .95 .93 .59 

.81  
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Mantel-Haenszel POWER of DETECTING DIF at alpha = .01 
 

N/N small medium Large 
500/500  low med Hi 

Lo .86 .99 .87 
Hi .73 .85 .70 

.83  

 low med Hi 
Lo .89 .99 .81 
Hi .77 .93 .77 

.86  

 low med Hi 
Lo 1.00 1.00 .90 
Hi .97 .93 .77 

.93  
200/100  low med Hi 

Lo .31 .46 .14 
Hi .16 .28 .17 

.25  

 low med Hi 
Lo .98 .97 .69 
Hi .83 .84 .61 

.82  

 Low Med Hi 
Lo 1.00 1.00 .75 
Hi .97 .89 .70 

.89  
200/50  low med Hi 

Lo .19 .24 .02 
Hi .06 .14 .06 

.12  

 low med Hi 
Lo .74 .82 .13 
Hi .46 .48 .18 

.47  

 low med Hi 
Lo .99 .98 .16 
Hi .94 .94 .46 

.75  
100/100  low med Hi 

Lo .17 .32 .13 
Hi .11 .15 .11 

.17  

 low med Hi 
Lo .85 .92 .54 
Hi .60 .74 .48 

.69  

 low med Hi 
Lo 1.00 .99 .63 
Hi .99 .99 .78 

.90  
100/50  low med Hi 

Lo .11 .18 .04 
Hi .07 .08 .03 

.09  

 low med Hi 
Lo .74 .70 .15 
Hi .44 .39 .18 

.43  

 low med Hi 
Lo .97 .98 .11 
Hi .87 .86 .44 

.71  
50/50  low med Hi 

Lo .05 .14 .06 
Hi .04 .07 .03 

.07  

 low med Hi 
Lo .51 .56 .15 
Hi .31 .35 .12 

.33  

 low med Hi 
Lo .90 .91 .10 
Hi .73 .69 .21 

.59  
50/25  low med Hi 

Lo 0 .07 0 
Hi .01 .02 .03 

.02  

 low med Hi 
Lo .28 .27 .01 
Hi .12 .13 .01 

.14  

 low med Hi 
Lo .67 .46 0 
Hi .59 .45 .02 

.37  
25/25  low med Hi 

Lo .01 .04 .01 
Hi .03 .01 0 

.02  

 low med Hi 
Lo .25 .26 0 
Hi .05 .14 .03 

.12  

 low med Hi 
Lo .41 .26 0 
Hi .25 .18 0 

.18  
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TESTGRAF: Power of DIF detection for Cut-Off Beta at nominal alpha = .01 
 
N/N small medium Large 
500/500 a\b low med Hi 

Lo .98 1.00 .94 
Hi .95 .99 .88 

.96  

 low med Hi 
Lo 1.00 1.00 1.00 
Hi 1.00 1.00 1.00 

1.00  

 low med Hi 
Lo 1.00 1.00 1.00 
Hi 1.00 1.00 1.00 

1.00  
200/100  low med Hi 

Lo .88 .96 .76 
Hi .78 .85 .83 

.84  

 low med Hi 
Lo 1.00 1.00 .98 
Hi 1.00 1.00 .94 

.99  

 low med Hi 
Lo 1.00 1.00 .99 
Hi 1.00 1.00 1.00 

1.00  
200/50  low med Hi 

Lo .79 .88 .60 
Hi .69 .77 .65 

.73  

 low med Hi 
Lo .99 .99 .82 
Hi .97 .96 .76 

.92  

 low med Hi 
Lo 1.00 1.00 .90 
Hi 1.00 1.00 .93 

.97  
100/100  low med Hi 

Lo .72 .83 .45 
Hi .57 .64 .45 

.61  

 low med Hi 
Lo .99 1.00 .78 
Hi .99 .99 .79 

.92  

 low med Hi 
Lo 1.00 1.00 .84 
Hi 1.00 1.00 .92 

.96  
100/50  low med Hi 

Lo .72 .83 .44 
Hi .52 .66 .47 

.61  

 low med Hi 
Lo .97 .99 .70 
Hi .98 .91 .63 

.63  

 low med Hi 
Lo 1.00 1.00 .77 
Hi 1.00 1.00 .83 

.84  
50/50  low med Hi 

Lo .72 .83 .53 
Hi .62 .71 .54 

.66  

 low med Hi 
Lo .97 .99 .62 
Hi .92 .92 .71 

.86  

 low med Hi 
Lo 1.00 1.00 .76 
Hi 1.00 .98 .84 

.93  
50/25  low med Hi 

Lo .37 .48 .13 
Hi .37 .38 .16 

.32  

 low med Hi 
Lo .83 .88 .21 
Hi .72 .65 .17 

.58  

 low med Hi 
Lo 1.00 .90 .27 
Hi .92 .95 .35 

.73  
25/25  low med Hi 

Lo .52 .64 .24 
Hi .46 .49 .21 

.43  

 low med Hi 
Lo .84 .87 .22 
Hi .88 .67 .40 

.65  

 low med Hi 
Lo .96 .90 .35 
Hi .90 .90 .38 

.73  
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