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Summary 
 
The successful development and appropriate and meaningful use of psychological tests and measures 
rests on the validation of inferences made from test scores obtained from a given sample in a given 
context. The modern, expanded, view of validity as an on-going process argues that researchers need to 
gather evidence to support the inferences made from the scores obtained on their measures. A general 
review is presented of a select number of psychometric analyses that can contribute to this evidential 
basis. The classical test approaches to reliability and item analyses are presented as well as approaches 
that take into account the latent continuum of variation. This analysis is appropriate after having 
determined by factor analysis that the items, as a whole, measure one latent variable. These techniques 
are presented using the Center for Epidemiologic Studies Depression scale (CES-D) as an example. 
The CES-D is useful as a demonstration because it is commonly used in the life and social sciences for 
both obtaining scores and for classifying individual respondents. The latter purpose necessitates 
methods that help one determine the cut-off score for classification (e.g., sensitivity, specificity, and 
ROC curves). 
 
 
1. Introduction 
 
The topic of this chapter “The Construction and Use of Psychological Tests and Measures” could 
nearly fill an encyclopedia of its own. In fact, many books have been written on the historical, 
mathematical, philosophical, and applied matters in psychological testing and measurement. Given the 
limited space of this piece, it is by necessity that coverage is selective and that there is a focus on some 
issues while others are mentioned only in passing or not at all. Furthermore, some of the subtleties that 
consume psychometricians and measurement specialists will be glossed over. Given that the readers of 
this volume are life and social scientists who will be selecting, developing, adapting, or using their own 
tests and measures, the motivation for selection of topics is governed by two goals. The first goal is to 
provide a bird’s eye view of the issues and objectives in test construction by focusing on the matter of 
selecting items to arrive at tests and measures from which one can make valid inferences. The second 
goal is to provide a practical presentation of some contemporary approaches to assessing the statistical 
(psychometric) properties of tests and measures. This latter goal focuses on some of the new 
technology of measurement and how it may reasonably develop in the future. In this presentation, it is 
assumed that the reader has an understanding of basic statistics including correlation and regression. 
 
With the above goals in mind, technical matters will be discussed in the context of real data involving a 
commonly used measure in the life and social sciences: the Center for Epidemiologic Studies 
Depression Scale (CES-D). The data presented herein is a sub-sample of a larger data set collected in 
northern British Columbia, Canada. As part of a larger survey, responses were obtained from 600 
adults (290 females with an average age of 42 years and 310 males with an average age of 46 years). 
 
2.  Psychological Tests and Measures 
 
2.1 What Is A Psychological Test Or Measure? 
 
A psychological test or measure may be viewed as a set of self-report questions (also called “items”) 
whose responses are then scored and aggregated in some way to obtain a composite score. The terms 
“test” and “measures” are used interchangeably in this context even though “tests” are, in common 
language, used to imply some educational achievement or knowledge test with correct or incorrect 
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responses. In many psychological measures (e.g., attitudinal measures), there are not “correct” or 
“incorrect” responses, per se. Furthermore, the term “scale” is also often used in the life and social 
sciences interchangeably with the term “questionnaire” to refer to the set of questions whose responses 
are aggregated into a composite score. The essential features therefore are: (a) a series of questions to 
which an individual responds, and (b) a composite score that arises from scoring the responses to these 
questions. The resultant set of questions together is referred to as a “scale”, “test”, or “measure”. 
 
Two types of scores can be obtained from items, but it is important to note that it is not the question 
format that is important here but the scoring format. Binary scores, which are also referred to as 
dichotomous item responses, are obtained from either: (a) items (e.g., multiple choice) that are scored 
correct/incorrect in aptitude or achievement tests, or (b) items (e.g., true/false, agree/disagree) that are 
dichotomously scored according to a scoring key in an attitude, opinion, or personality scale. Ordinal 
item responses, which are also referred to as graded response, Likert, Likert-type, or polytomous items, 
involve more than two scoring options such as a 5-point strongly agree to strongly disagree scale on a 
personality or attitude measure. Note that, in this context, the word polytomous is used to imply 
ordered responses and not simply multi-category nominal responses. For simplicity and consistency 
with the life and social sciences literature, the various terms denoting ordered multicategory scores will 
be referred to as "Likert-type" throughout this piece although this deviates from the original and very 
strict definition of a Likert format. An interesting feature of ordinal or Likert-type scores is that, for 
some research purposes, they can also be re-scored in a meaningful binary fashion.  
 
The items in a test or measure are considered to be indicators or markers of the phenomenon under 
study (also called a construct or latent variable) and therefore their composite is also an indicator of the 
phenomenon and not the phenomenon itself. For example, the CES-D is a 20-item scale introduced 
originally by Lenore S. Radloff to measure depressive symptoms in the general population. It has also 
been shown to be useful in clinical and psychiatric settings although it is not intended for diagnostic 
purposes, but rather as an index of current feelings of general depression. The CES-D has been 
translated into many different languages and is widely used in both large-scale and small-scale 
epidemiologic studies. The key point here is that the composite (i.e., scale) score is not depression itself 
but rather an observable indicator of depression -- or more accurately, the score is an indicator of 
depressive symptoms. 
 
The CES-D prompts the respondent to reflect upon his/her last week and respond to questions such as 
“My sleep was restless” using an ordered or Likert-type response format of “not even one day”, “1-2 
days”, “3-4 days”, “5-7 days” during the last week. The items typically are scored from zero (not even 
one day) to three (5-7 days). Composite scores therefore range from 0 to 60, with higher scores 
indicating higher levels of depressive symptoms. It was noted above that Likert-type items are 
sometimes re-scored into a binary format. Several such re-scoring options can be found with the CES-
D. A very common binary re-scoring of the CES-D is used when researchers are only interested in the 
presence or absence of depressive symptomology rather than a degree of symptomology so they score 
all responses other than “not even one day” as “1” so that the resulting scale is “not even one day” 
equals 0 and all other responses equal 1. This binary scoring format is sometimes called the “presence 
method” of scoring. Note that as the example shows, re-scoring may result in the instrument measuring 
a subtly different construct. Throughout this chapter, the original Likert-type response format, which 
conveys not only presence or absence of symptoms but also the degree, will be used. 
 
As a note to the general social and policy researcher, although our example focuses on a psychological 
dysfunction, the methods in this piece also apply to scales of opinions and attitudes (e.g., a measure of 
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one’s feelings of personal safety, life satisfaction, or spending preferences; attitudes toward social 
policies, gun control, or abortion). 
 
2.2 For What Are Tests And Measures Used? 
 
There are two main purposes of measurement in applications in the life and social sciences: 

• Descriptive: Assigning numbers to the results of observations for the purpose of obtaining a 
scale score in scientific or policy research. 

• Decision-making: Using the scale scores to categorize individuals or groups of individuals 
based on their responses to the test or measure.  

 
The latter purpose subsumes the former but is also concerned with setting cut-off scores used to 
meaningfully categorize individuals or groups of individuals. For example, a cut-off score of 16+ is 
commonly used with the CES-D in epidemiologic studies to yield an estimate of the proportion of 
individuals in the population likely to have a disorder severe enough to require professional 
intervention.  
 
2.3 Organization Of This Article 
 
In summary, it should become evident as one progresses in understanding measurement technology that 
the field distinguishes items, scales, and the phenomenon of interest. Individuals respond to statements 
or questions, the responses are then combined into a composite score, and the composite score is 
related to the phenomenon of interest. The phenomenon itself is often unobservable and hence is 
referred to as a latent variable. In the most commonly used statistical measurement techniques, the 
phenomenon of interest is assumed to be a quantity (as opposed to some sort of typology); thus, the 
latent variable is assumed to be a continuous latent variable.  
 
In the case of the CES-D, individuals respond to 20 statements describing depressive symptoms 
occurring within the last 7 days. These responses are then combined into a composite scale score. The 
composite scale score is not the phenomenon of depression, per se, but rather is related to depression 
such that a higher composite scale score reflects higher levels of the latent variable depression. In 
describing measurement in this way, it seems obvious that a primary concern should be the selection of 
questions or items that adequately reflect symptoms of depression. Cast in this way, a central question 
of evaluating, developing, and adapting tests and measures is how the items come together to reflect the 
phenomenon of interest. This question is addressed through item analysis. The item analysis 
technology of tests and measures was developed to help answer the following practical questions faced 
by researchers and policy-makers alike: (a) Given that the items are combined to created one scale 
score, do they measure just one latent variable? (b) How much of the observed variation is true 
variation and therefore how precisely do the items measure? and (c) How does this precision change 
across the levels of the continuous latent variable? Due to space limitations, a description of methods 
(differential item functioning) to investigate whether the items measure differently for different groups 
(e.g., males and females) is not included.  The reader should note that one should not confuse precision 
and accuracy.  The former term implies little measurement error whereas the latter term implies that 
one is tapping the dimension of interest (rather than some other dimension). 
 
Sections 2 – 3 of this chapter present methods to answer each of these three questions, respectively, and 
focus on the descriptive purpose of measurement described above. Section 4 will concern itself with the 
techniques of the decision-making purpose of measurement. As a whole, this chapter concerns itself, in 
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its essence, with validation; therefore, the chapter ends with a review of current thinking in validation 
as it applies to test and measures. This last section brings together all of the previous sections with the 
purpose of providing evidence for the validity of the inferences one makes from the scale scores.  
 
3. Do The Items Measure Just One Latent Variable? 
 
An interesting and provocative historical point is that, in the early 1900s, Professor Charles Spearman 
presented two separate papers analyzing the same data two different ways. In one paper he introduced 
the foundations of the methods for answering the question of whether items measure just one latent 
variable (i.e., factor analysis). In the other paper, he introduced the fundamental ideas to answer the 
question of how much of the observed variation is true variation (i.e., reliability and classical test 
theory). It has been argued that these two papers represent one underlying mathematical model, often 
called factor analysis, that describes the relation between observed and latent variables (i.e., 
unobservable variables). It has been further argued that over the course of the next century of research 
factor analysis and reliability theory have been treated as essentially different models when, in fact, 
Spearman, their developer, may have viewed them as interrelated models, if not the same mathematical 
model. 
 
To answer the question of whether the items on a test measure one or more latent variables, 
measurement specialists historically (due to Spearman’s work in the early 1900s) have focused on the 
covariation among the items comprising a scale. The statistical theory is based on the assumption that 
items covary among themselves because they have some unobservable (latent) variable in common. 
The latent variable, of course, is the construct or phenomenon of interest measured by the set of items. 
In other words, the latent variable accounts for the covariance among the items and represents the 
attribute that the item responses share in common – hence this is sometimes called “common factor 
analysis”. 
 
In the framework of modern statistical theory, the previous paragraph describes the analysis of 
covariance matrices using covariance structure models. In the context of this section, these covariance 
structure models are called confirmatory factor analysis (CFA) models. In the typical CFA model, the 
score obtained on each item is considered to be a linear function of a latent variable and a stochastic 
error term. Assuming  items and one latent variable, the linear relationship may be represented in 
matrix notation as  

p

 
,δξ +Λ=X                                                                               (1) 

 
where  is a (  x 1) column vector of scores for person  on the  items,  is a (  x 1) column 
vector of loadings (i.e., regression coefficients) of the  items on the latent variable, ξ  is the latent 
variable score for person i , and δ  is (  x 1) column vector of measurement residuals. It is then 
straightforward to show that for items that measure one latent variable, Equation 1 implies the 
following equation: 

X p i p Λ p
p

p

 
,' Ψ+ΛΛ=Σ                                                                                 (2) 

 
where  is the (  x ) population covariance matrix among the items and  is a ( x ) matrix of 
covariances among the measurement residuals or unique factors, Λ  is the transpose of Λ , and  is as 

Σ p p Ψ p p
′ Λ
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defined above. In words, Equation 2 tells us that the goal of CFA is to account for the covariation 
among the items by some latent variables.  
 
More generally, CFA models are members of a larger class of general linear structural models for a p-
variate vector of variables in which the empirical data to be modeled consist of the p x p unstructured 
estimator, the sample covariance matrix, S, of the population covariance matrix, ∑ . A confirmatory 
factor model is specified by a vector of q unknown parameters, θ , which in turn may generate a 
covariance matrix, , for the model. Accordingly, there are various estimation methods such as 
generalized least-squares or maximum likelihood with their own criterion to yield an estimator θ  for 
the parameters, and a legion of test statistics that indicate the similarity between the estimated model 
and the population covariance matrix from which a sample has been drawn (i.e., ). That is, 
formally, one is trying to ascertain whether the covariance matrix implied by the measurement model is 
the same as the observed covariance matrix, 

∑( )θ
$

∑ = ∑( )θ

 
,ˆ)ˆ(ˆ'ˆˆ Σ=Σ=Ψ+ΛΛ≅ θS                                                                   (3) 

 
where the symbols above the Greek letters are meant to imply sample estimates of these population 
quantities. 
 
As in regression, the goal of CFA is to minimize the error (in this case, the off-diagonal elements of the 
residual covariance matrix) and maximize the fit between the model and the data. Most current indices 
of model fit assess how well the model reproduces the observed covariance matrix. 
 
In the example with the CES-D, a CFA model with one latent variable and some specified error 
covariances reflecting the test format was specified and tested using a recent version of the software 
LISREL. Suffice it to say that an examination of the fit indices such as the Chi-square test and the root 
mean-squared error of approximation (RMSEA), a measure of model fit, showed that the one latent 
variable model was considered adequate for the purpose of demonstrating the item analysis techniques 
that follow in the sections to come. 
 
4. How Much Of The Observed Variation Is True Variation And How Precisely Do The Items 
Measure? 
 
4.1 Classical Test Theory And Omnibus Measures 
 
A key element of classical test theory that was introduced by Charles Spearman is the idea that an 
observed score is a linear combination of a true score and an error score (although hints of this idea 
were evident in a less formal way in the earlier work of F. Y. Edgeworth). In this framework, the true 
score is that attribute which the items share in common, and the error score is the difference between 
the observed and true scores. More formally, let the observed score, , for an individual be the 
algebraic sum of two components, the true score, T , and the error score, ,  and with the 
fairly standard assumptions that: (a) the covariation among T and E is zero, (b) if one takes into 
account the true score, the average error is zero, and (c) the errors are not correlated across items. With 
these assumptions in hand, it is well known that the theoretical reliability of a scale can be defined as  

X
E ,ETX +=
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which equals the squared correlation of T and X. This formulation means that the theoretical reliability 
of a measure is the proportion of observed variance that is true variance or likewise the variance in 
observed scale scores that is due to differences between individuals. 
 
Of course, one does not have at hand the true variance so many rather clever methods have been 
developed over the course of nearly a century of work in test theory to estimate the theoretical 
reliability from observed data. Four such methods are: (a) to create two parallel or even alternate forms 
of a test and compute the correlation coefficient between the two halves, (b) to simply retest the 
individuals and compute a test-retest correlation, (c) to divide the items into two separate halves and 
compute a split-half correlation between the two halves, and (d) to compute Cronbach’s coefficient 
alpha. The most widely used approach is that of Cronbach’s coefficient alpha. Interestingly, 
Cronbach’s coefficient can also be seen from Hoyt’s earlier framework, wherein he introduced the fact 
that classical test theory can be formulated as a random effect analysis of variance, or variance 
components. Hoyt’s results are noteworthy because they laid the foundation for many of the 
developments in generalizability theory, which allows us to partition and take into account the sources 
of error variation. 
 
Coefficient alpha has evolved into two separate, but interrelated uses: (1) as an estimate of the 
theoretical reliability in Equation 4, and (2) as an estimate of the internal consistency of responses to 
the scale items. The reason for the second use is that coefficient alpha can be conceptualized as an 
average of all possible adjusted split-half correlations. With this conceptualization in mind, a 
coefficient alpha of large magnitude would mean that the items are highly interrelated and hence “hang 
together well”. However, this internal consistency approach has led to an inappropriate use of 
coefficient alpha wherein it has been said by some text authors and researchers that a large coefficient 
alpha means that the test is measuring a univocal (i.e., unidimensional) construct. In fact, it has been 
shown in the psychometric literature that this is not true (e.g., coefficient alpha can be large even 
though the item responses are accounted for by more than one latent variable) and that matters of the 
number of latent variables or dimensions tapped by a set of items is best considered through the use of 
factor analysis. In an important sense, the internal consistency conceptualization has misled researchers 
and has since been supplanted by developments in factor analysis. Therefore, it is recommended that 
one only use coefficient alpha as an estimate of the theoretical reliability as described in Equation 4, 
and that discussions of how the items “hang together” or whether they tap one latent variable be 
addressed using factor analytic techniques. 
 
At the beginning of this section measurement error was introduced as the discrepancy between the 
observed score and the true score. Measurement error can be of two types or causes: (1) unsystematic 
errors, and (2) systematic errors. Unsystematic errors include item selection, test administration factors 
such as anxiety or environmental noise, and test scoring that change from one test session to another. 
Systematic errors, on the other hand, are error that occur consistently but are often unknown to the 
tester. For example, a test may claim to measure intelligence, but because of the way it is set up or the 
questions it asks, it is also actually measuring something else like anxiety or speed of responding. The 
error term in Equation 4 refers to random error.  
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The standard error of measurement is basically an estimate of the amount of random error surrounding 
scores on a particular measure. If the standard error of measurement was zero, then that would indicate 
that there was no random measurement error at all. The larger the magnitude of the standard error, the 
more random measurement error that is present. More formally, the standard error of measurement 
describes an estimate of the standard deviation of the distribution of test scores that would presumably 
be obtained if a person took the test an infinite number of times. Of course, the average of these infinite 
independent test scores obtained from a person is the true score. The standard error of measurement is 
computed as estimateyreliabilitsd  1−× , where  denotes the sample standard deviation of the 
composite score. 

sd

 
The widely available software package SPSS was used to compute Cronbach’s coefficient alpha for the 
CES-D scale for the 600 respondents described earlier. The resultant coefficient alpha is 0.906. What 
this means is that if the responses to the 20 items can be accounted for by one latent variable (as was 
shown above to be the case), then roughly 90% of the observed variance is true score variance. The 
assumption of one latent variable is sometimes stated (using a different terminology and psychometric 
framework) as essential tau-equivalence. Of course, it is also well known that if essential tau-
equivalence does not hold (i.e., more than one latent variable is involved) then coefficient alpha is a 
lower bound estimate of the theoretical reliability. That is, the theoretical reliability will be greater than 
or equal to the coefficient alpha. For our sample, the standard deviation of the composite score is 9.46 
therefore the standard error of measurement is 2.90 (i.e., 2.90 = 906.0146. −×9 ). Note that the 
standard error, in this case, is measured in the zero to sixty scale of the composite. If, however, one 
were using the sample z-scores the standard error of measurement would be 0.307. This is a reminder 
that the magnitude of the standard error of measurement reflects the metric that one is using for 
interpretations, in this case either the raw composite or the raw composite transformed to z-scores. 
 
The reliability coefficient has one inherent limitation in its interpretation that needs to be kept in mind. 
That is, it is not known which, of two general sources, is the actual cause of a low reliability 
coefficient. As can be seen from Equation 4 above, low reliability can result from two possible sources. 
The first source is poor measurement precision or said another way, high error variance. That is, if, for 
illustrative purposes, one holds constant the true score variance, then one could see that a low reliability 
can result from an increase in the error variance. The second source is a sample with low true score 
variation. That is, from Equation 4, if one held constant the error variance, one would see that a low 
reliability can result from decreased true score variance. This may also be explained as the effect that a 
restricted range of true scores would have on the squared correlation between true scores and observed 
scores. These sources of unreliability are important to note because they play an essential role in 
understanding and interpreting the reliability of scores. It is also worth noting that although one can 
determine the proportion of observed score variance that is due to either true score variance or error 
variance, one does not know the amount or magnitude of these variances.  
 
Because of the limitations of classical test theory estimates of reliability described above, some 
measurement specialists have recommended that classical reliability estimates (and hence standard 
error of measurement) no longer be used in measurement practice. Others do not take this view and 
instead warn practitioners that they need to keep in mind this inherent limitation when interpreting 
classical reliability estimates. The rationale for not abolishing the traditional reliability 
conceptualization is two-fold. First, the reliability coefficient shares its limitation with all correlation-
based statistical methods and hence all of those methods would have to be abolished as well (e.g., 
regression analysis, analysis of variance, and other general linear statistical model methods). Second, 
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practitioners simply need to be clear about precisely what the reliability coefficient, as an estimate of 
the theoretical reliability, is providing; that is, the proportion of the observed score variation that is true 
variation. Put another way, one can think of variation as noise and reliability as an indicator of what 
proportion of that noise is signal, as in a signal to noise ratio.  
 
Two additional points are worth noting.  First, reliability is a property of the test scores (and not the test 
itself) and thus it is dependent upon both the sample of respondents from which, and the context in 
which, the scores were obtained.  Second, there has been increased recognition that reliability estimates 
might also vary for scores representing different levels of the latent variable.  Therefore, it is necessary 
that researchers report: (a) a classical reliability coefficient such as coefficient alpha based on their own 
sample of data (rather than simply reporting favorable reliability coefficients from the literature or a 
test manual), and (b) a reliability estimate that takes into account the varying levels of the latent 
variable – such as the test statistics based on nonparametric item response modeling. The latter point is 
particularly important for test developers as well. These two steps together will give the researcher a 
sense of how much of the observed variation is true variation and then how that quantity varies across 
the levels of the latent variable (e.g., for high, moderate, and low scorers). The next section is devoted 
to presenting an item response modeling methodology. 
 
4.2 Nonparametric Item Response Modeling: Considering The Latent Variable In Psychometric 
Analyses 
 
As described above, commonly used classical test indices provide an overall index of reliability 
irrespective of the level of the latent variable whereas the item response modeling approach provides 
information over the range of the latent variable. 
 
Most of the item analysis techniques used in scale construction and scale evaluation are based on 
classical test theory. The common indices are:  

• coefficient alpha,  
• item-total correlations (which measure each item’s capacity to discriminate among individuals). 

 
As a brief refresher, scale or questionnaire construction (i.e., the forming of aggregate scores) involves 
designing a set of items that are intended to be indicators of where someone is placed on a continuum 
of a quantitative latent variable (or a continuum of variation). Item analysis uses the item response data 
to assess the extent to which each item indicates the continuum of variation; in this early empirical 
stage, the existence of the latent variable is inferred from the relations among the item responses. 
Although one begins with a theoretically defined latent variable, that latent variable later becomes an 
empirical inference by virtue of evidence from an exploratory or confirmatory factor analysis.  
 
It should be noted, however, that the item analyses presented herein are founded on the notion that the 
item responses are primarily determined by the amount, or level, of some single continuum of variation 
(i.e., a latent variable). Alternatively, however, a researcher can also be interested in investigating the 
extent to which a single latent variable determines performance -- i.e., how do the items perform if the 
scale or aggregate measure is treated as if it were univocal. Both exercises above are relevant when one 
is investigating the validity of the inferences made from the aggregate (or total) scale score. 
 
Techniques in item response modeling (either parametric or nonparametric) allow researchers to model 
item responses as a function of a continuum of variation. Importantly, the item response modeling 
approach provides information over the range of the latent variable. In a sense, then, a researcher using 
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item response modeling can obtain more information about how the item performs in relation to the 
scale score (or aggregate) than they would using the classical indices. This is an important advantage of 
item response modeling. 
 
There are two main forms of item response modeling: parametric and nonparametric. Parametric item 
response modeling conceives of the item response function with a parametric form. Nonparametric 
item response modeling lacks such strict assumptions about the form of the relationship and more 
closely models the functional relationship with the data at hand. We will focus on nonparametric item 
analysis because we envision readers using it on small data sets (e.g., less than 300 respondents) and 
prefer graphical depictions of the item responses. A particularly useful approach to nonparametric item 
response modeling has been developed by Jim Ramsay. The presentation herein closely follows 
Ramsay’s development.  
 
In describing item response modeling, it is a reasonable assumption that each individual responding to 
an item of the CES-D scale possesses some amount, θ , of depression. Item response modeling (often 
called item response theory) has the basic, but fundamental, goal of developing statistical models that 
account for the likelihood of endorsing an item as a function of some characteristics of the item itself 
(i.e., item parameters; an example of which might be the ability of items to discriminate among 
individuals) and of the amount of the latent variable, θ . 
 
The cornerstone of item response modeling is the item response function, which is the relationship 
between the likely item response and the various levels of the continuum of variation. A useful way to 
introduce nonparametric item response modeling is by starting with the commonly-found regression 
model in social research. Figure 1 depicts a scatter diagram of a linear regression of 
 

εβθαθ +=)(yE + ,                                                                 (5) 
 
where the expected value of y -- )( θyE

β
; more precisely the conditional distribution of y -- is a linear 

function of θ ,  is an intercept term,  is the slope, and ε  denotes error, as is commonly found in 
simple linear regression.  

α

 
The model in Equation 5 underlies traditional item analysis procedures described above such as those 
for calculating item discrimination (i.e., the item-total correlation) and estimates of reliability.  
 
 
 
     ... 
  y     . ...........    .  
    .. ..     .    
   ... ..     . 
                     ..... 
 
     
                                              θ  
 

Figure 1. Generic Scatter Diagram With Plotted Regression Line 
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In essence, what Equation 5 states is that at the various values of θ  there is a sub-distribution (also 
called a conditional distribution) of y scores, and the center of each of these sub-distributions is lined 
up in a straight line. The simplest way to conceptualize the conditional distributions in regression is to 
think of a population scatter diagram as in Figure 2. 
 
 
 
 
                  population regression line  
 
           y  
         a conditional distribution at a value of θ  
 
 
 
   θ  
 

Figure 2. A Scatter Diagram Depicting Conditional Distributions in Regression 
 
If, instead of Equation 5, one sets out to model the conditional distributions of y at the various values of 

 in a naïve nonparametric regression one would conceptually compute the conditional distribution at 
each and every value of θ . However, one would have to assume that there are many replications of y at 
each value of θ , and one would indeed need a very large sample size to accommodate such an 
approach. Nonetheless, if one assumed such a large and diverse sample composition, one could then 
see how the mean (or if the data is skewed, the median) of these conditional distributions line up and it 
would not have to be a straight-line pattern but rather one would let the data speak for themselves. In 
this case, the relationship between y and θ  would not necessarily have to be linear as in Equation 5. 
Instead, one could depict this relationship in the following way: 

θ

 
εθθ = )()( fyE + .                                                               (6) 

 
The resulting regression line would follow the data closely. In essence, one would dissect the θ  into a 
large number of narrow intervals and plot a conditional distribution at each one of those intervals as in 
Figure 3. 

 
 
     ... 
  y     . ...........    .  
    .. ..     .    
   ... ..     . 
                     ..... 
 
     
                                              θ  

Figure 3. Generic Scatter Diagram With Plotted Nonparametric Regression Line 
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Of course, in practice it is more typically the case that one has a relatively small sample size at hand 
and one would have to work with fewer intervals along θ , each interval possibly being larger and 
containing relatively few data points. The class of nonparametric regression methods used in 
nonparametric item response modeling is a more sophisticated approach of interval widths and 
estimation within those intervals. Ramsay’s approach, as implemented in the freely distributed software 
program TESTGRAF, relies on Kernel smoothing procedures, i.e., a Gaussian Kernel. In fact, in using 
this technique, the form of the function relating y and θ  is determined by the data at hand and less by 
any explicit pre-determined form, such as a linear function. The values of y may, for example, increase 
or decrease as a function of θ . 
 
In summary, in this nonparametric variety of item response modeling, rather than conceive of the item 
response function as a well-behaved smooth increasing function with a parametric form, one can 
instead use nonparametric regression to model the functional relation between the likely value of y to 
the value of a latent variable. The technique is nonparametric in the sense that, in comparison to 
parametric forms, it lacks assumptions about the form of the relationship between the response and 
explanatory variables.  
 
Figure 4 is an example of an item response function computed through nonparametric item response 
modeling, using Ramsay’s TESTGRAF computer program. Figure 4 depicts the nonparametric item 
response function for the CES-D item “My sleep was restless” on a response format of (0) “not even 
one day”, (1) “1-2 days”, (2) “3-4 days”, and (3) “5-7 days” during the last week.  

 
 

 
 

Figure 4. A Nonparametric Item Response Function For CES-D Item 11 Using TestGraf. 
 
The X-axis represents the latent variable, θ , score and the Y-axis is the likely response at the 
corresponding θ  score. Note that the function in Figure 4 is not as well-behaved as the function given 
in Figure 1. Again, the form of the function in Figure 4 is determined in part by the data at hand and not 
by a pre-specified form, like that in Equation 5 and depicted in Figure 1. It is important to note that the 
purpose of this type of nonparametric item response modeling, as developed by Ramsey, is to replace 
the equation and parameters in Equation 5 and Figure 1 with graphical displays.  
 
The nonparametric item response function, commonly called the item characteristic curve, ICC, is 
depicted as a solid line in Figures 4 and 5. Along this function there are also small vertical solid lines 
which indicate the 95% pointwise confidence limits (these are not 95% confidence limits for the entire 
curve but rather confidence limits at particular points on the continuum of variation).  
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Also shown on the plot in Figures 4 and 5 are vertical dashed lines across the entire plot indicating 
various quantiles of the standard normal distribution. The third dashed vertical line, from the right, 
indicates the mean while 50% of the scores lie between the second and fourth lines, and 5% beyond the 
first and fifth vertical dashed lines. Going from left to right, the dashed vertical lines indicate the 5th, 
25th, 50th, 75th, and 95th percentiles, respectively. In fact, the far left dashed line is nearly on the Y-
axis. The fact that the dashed lines are all tending toward the left of the X-axis, tell us that the latent 
scores are bunched up near the lower scores.  
 
Figure 5 is a density plot (i.e., a type of probability or frequency plot) of the expected (i.e., latent) score 
on the CES-D. The plot gives us a sense of the distribution of the observed variable and suggests that 
most of the scores are at the low end of the scale (i.e., indicating little to no depressive 
symptomatology). This finding of skewed scores is, of course, expected in a general population of 
respondents. 
 

 

 
Figure 5. Density Plot of the CES-D Expected (Latent) Scores. 

 
In all of the graphical displays that follow, it is important to note that nonparametric item response 
modeling, as implemented in TESTGRAF, does not use the numerical values of the observed total 
score (or aggregate score) in its displays. Rather, because the goal of the item analysis is to work at the 
latent variable level of analysis, TESTGRAF first replaces the observed aggregate score by their ranks, 
and then replaces the ranks by the corresponding standard normal quantiles (z-scores) prior to applying 
the Gaussian Kernel smoothing for the nonparametric regression. One is able to perform the 
computations because one cannot measure a latent variable in the usual sense. As Ramsay discusses, 
one can only measure the latent variable to within any transformation that preserves the rank order 
among the observed total scores -- called a monotone transformation. 
 
Although the class of monotone transformations is limited, it allows for several possible options for the 
abscissa (X-axis) on the graphical displays, e.g., standard normal quantiles or formula scoring. In some 
applications, researchers have chosen to display the standard normal quantiles (z-scores) because they 
are familiar to most researchers and they are the quantities used in computation of the smoothing 
regression. In this presentation, the expected scores are displayed in terms of the original scale, 0-60, as 
described above. 
 
As a final note, because of both the method of estimation and the reliance on graphical displays, the 
nonparametric item response modeling presented here does not have the excessive demands on sample 
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size found in the parametric item response models. The parametric models (particularly the 3-parameter 
model) require a thousand or more subjects to get adequate parameter estimates and thus are used 
exclusively by large testing companies like ETS in the United States, which have access to very large 
datasets. The nonparametric item response modeling approach developed by Ramsay, however, has 
made it viable for many researchers to use item response modeling.  
 
One can obtain an intuitive understanding of the item response function and the information it portrays 
by noting, for example, that for the function shown in Figure 4, when one has an expected scale score 
of 0.0 on the latent variable, i.e., they display no depressive symptomatology, the most likely item 
response to the question “My sleep was restless” is 0 (“not even one day”). Likewise, individuals who 
are expected to score approximately 16 (the cut-off typically used to help compute the prevalence of 
depression in a population) on the total scale will likely provide a response of 1 (“1-2 days in the last 
week”) to that question. Note that the “likely responses” for the prior sentences were obtained by 
drawing a line parallel to the abscissa for the lower and upper pointwise confidence limits at the 
various expected scores. Finally, as expected, the item response function starts at the bottom left of 
Figure 4 and increases steadily to the top right corner of that plot. The slope of that line at any given 
interval of the expected score gives one the sense of how well the item discriminates among 
respondents. Clearly a flat item response function would mean that everyone, irrespective of their 
expected scale score, would give the same likely response to the item. This would not be a particularly 
useful item. Furthermore, one may be able to imagine that an item for which the item response function 
starts at the top left and then declines (while all the other items are the opposite slope) is either 
incorrectly scored or, performing terribly. 
 
Figure 6 shows the item response functions for four of the 20 items of the CES-D with a sample of 600 
respondents. Figure 7 lists all of the corresponding questions so that the reader can get a sense of what 
a psychological test looks like and it will aid in interpreting how the items in Figure 7 are performing. 
For example, it is instructive to compare item #2, “I did not feel like eating; my appetite was poor” 
with items #14, #18, or #20. Clearly when looking at item #2 it can be seen that one needs to be 
exhibiting a very high level of depressive symptomotology before one will endorse the appetite 
question much beyond 1-2 days per week. 
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Figure 6. Item Response Functions for Four of the CES-D Items. 
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For each statement, circle the number (see the guide below) to indicate how often you felt or behaved 
this way during the past week. 
    0 = rarely or none of the time (less than 1 day) 
    1 = some or a little of the time (1-7 days) 
    2 = occasionally or a moderate amount of time (3-4 days) 
    3 = most or all of the time (5-7 days) 
 

  
not 
even 1 
day 

1-2 
days 

3-4 
days 

5-7 
days 

1. I was bothered by things that usually don’t bother me. 0 1 2 3 
2. I did not feel like eating; my appetite was poor. 0 1 2 3 
3. I felt that I could not shake off the blues even with help  
     from my family or friends. 0 1 2 3 
4. I felt that I was just as good as other people. 0 1 2 3 
5. I had trouble keeping my mind on what I was doing. 0 1 2 3 
6. I felt depressed. 0 1 2 3 
7. I felt that everything I did was an effort. 0 1 2 3 
8. I felt hopeful about the future. 0 1 2 3 
9. I thought my life had been a failure. 0 1 2 3 
10. I felt fearful. 0 1 2 3 
11. My sleep was restless. 0 1 2 3 
12. I was happy. 0 1 2 3 
13. I talked less than usual. 0 1 2 3 
14. I felt lonely. 0 1 2 3 
15. People were unfriendly. 0 1 2 3 
16. I enjoyed life. 0 1 2 3 
17. I had crying spells. 0 1 2 3 
18. I felt sad. 0 1 2 3 
19. I felt that people dislike me. 0 1 2 3 
20. I could not get “going”. 0 1 2 3 

Note:  Items 4, 8, 12, and 16 were reverse coded. 
 
 

Figure 7. The CES-D Items. 
 
 
Finally, Figure 8 contains a display of the reliability of the scale inferences at various levels of the 
latent variable. Several points are noteworthy. First, the reliability ranges from 0.80 to 0.91 whereas the 
traditional coefficient alpha for these same items and participants was 0.906. In a sense, the traditional 
coefficient alpha is a marginal (or average) reliability across the continuum of variation. Secondly, if 
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one focuses on the range from the 25th to the 95th percentiles, with expected scores between 
approximately 5 and 15, the reliability is always greater than 0.90. In fact, it is outside of this range that 
the reliability begins to decline. This last display underscores the importance of taking into account the 
continuum of variation when conducting item analyses and furthermore highlights that the scale 
operates optimally in the 25th to 75th percentile range for this sample. Interestingly, the reliability the 
cut-score of 16 is quite good and in the range of 0.90. 
 
Figure 8 also contains the conditional standard error of measurement. As expected from the formula for 
the standard error of measurement, the higher the reliability, the smaller the standard error of 
measurement. The standard error of measurement varies from approximately two to four (out of 60 
possible) points across the continuum of variation. Recall that the classical standard error of 
measurement for this sample was 2.90, like the classical reliability it is akin to an average across the 
continuum of variation, θ , and this one score would have been reported irrespective of the score 
obtained by the respondent. Note that, coincidentally, the conditional standard error of measurement at 
the cut-score of 16 is approximately 2.90, but the standard error of measurement would have been 
much larger (i.e., 4) if the cut-score had been set at 29. 
 
 

  
 
Figure 8. The Conditional Reliability and standard error of measurement (SEM) for the CES-D 

Plotted Against the Expected Score. 
 
Three further points are noteworthy. First, it is worth reminding the reader that the conditional 
reliabilities and the conditional standard errors of measurement obtained are dependent on the sample 
and context in which they are obtained. Second, if one uses the expected score on the abscissa, one may 
find sharp increases in reliability (and hence decreases in the conditional standard error of 
measurement) at the extremes of the latent variable but these increases (and decreases) should be 
ignored because they are an artifact of transforming from the standard normal quantiles to the expected 
number correct. Figure 9 presents the conditional reliability plot for the same data as in Figure 8 except 
that it is plotted against the standard normal (i.e., z scores) scores rather than the expected score. Note 
that the term “Proficiency” in the plot is a legacy of the fact that these techniques were initially 
developed for achievement tests. The term “proficiency” is more accurately replaced by “the latent 
variable or latent continuum of variation”. Third, the conditional standard error of measurement is 
reported in the metric of z-scores; therefore, it varies from 0.20 to 0.50 standard deviation units across 

. Recall that the classical standard error of measurement, in z-score units, was 0.307. θ
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Figure 9. The Conditional Reliability and SEM for the CES-D Plotted Against the Standard 
Normal Score 

 
 
To this point, methods have been described for ascertaining: (a) if the items are combined to create one 
scale score, do they measure just one latent variable? (b) how much of the observed variation is true 
variation?, and (c) how precisely do the items measure and how does this precision change across the 
levels of the continuous latent variable?  
 
5. Measurement Decisions 
 
5.1 Sensitivity, Specificity, and Predictive Values 
 
Next, the focus will be on using the scale scores to categorize individuals or groups of individuals 
based on their responses to the test or measure. Specifically, this presentation will be on methods for 
determining the accuracy of decisions (i.e., categorizations). 
 
Sensitivity, specificity, and predictive values are all used as evidence of the accuracy or correctness of 
a decision (i.e., validity) to categorize individuals – in this case, as depressed or not depressed. Before 
one can calculate these values, one must determine by some means other than the measure of interest, 
who in the sample is depressed and who is not. When evaluating a self-report scale, this might be 
determined on the basis of a gold standard such as a Diagnostic and Statistical Manual-IV (DSM-IV) 
diagnosis. The 2 x 2 table in Figure 10 shows the relationship between these values and how they are 
calculated.  
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  SCALE DECISION  
  Not Depressed Depressed  

Not Depressed True Negatives False Positives Specificity GOLD 
STANDARD Depressed False Negatives True Positives Sensitivity 
  NPV PPV  
 
Sensitivity = true positives / (false negatives + true positives) 
Specificity = true negatives / (true negatives + false positives) 
Positive Predictive Value (PPV) = true positives / (false positives + true positives) 
Negative Predictive Value (NPV) = true negatives / (true negatives + false negatives) 
 

Figure 10. A Two-by-Two Table Depicting Possible Measurement Decisions 
 
 
Sensitivity and specificity tend to be of greater interest to the researcher who is interested in the 
accuracy of a scale in identifying both depressed and nondepressed individuals. Sensitivity is the 
percentage of depressed people in the sample that the depression scale correctly identified as depressed. 
For example, if sensitivity is 85%, then the scale was able to identify correctly 85% of the depressed 
people in the sample. Specificity is the percentage of nondepressed people in the sample that the 
depression scale correctly identified as nondepressed. Thus, if specificity is 79%, then the scale was 
able to identify correctly 79% of the nondepressed people in the sample.  
 
In the case of depression, one may be interested in obtaining maximum sensitivity (as opposed to 
maximum specificity, or maximum sensitivity and specificity). Highest possible sensitivity levels 
typically are desired whenever the condition is serious and should not be missed, is treatable, and when 
false positive results do not lead to serious psychological or economic trauma to the patient or medical 
system.  
 
Predictive values tend to be of greater interest to the clinician, physician, and patient because they 
indicate how accurately the scale can predict the presence or absence of depression when it is not 
known whether the person is depressed. The positive predictive value (PPV) is the percentage of 
individuals who are truly depressed out of those that the scale identified as depressed. Thus, a PPV of 
56% means that only 56% of the people that the scale identified as depressed really were depressed. 
The negative predictive value (NPV) is the percentage of people who are truly not depressed out of 
those that the scale identifies as nondepressed. A NPV of 72% means that 72% of the people that the 
scale identified as not depressed really were not depressed. 
 
PPVs are strongly influenced by both the prevalence of condition (i.e., the number of people per 
100,000 who are depressed at the time of the study) and specificity. An examination of the chart in 
Example 1 shows that as prevalence increases, so does PPV. 
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Example 1: Sensitivity = 95% & Specificity = 95% 
   
 Prevalence (%) PPV (%) 
 1 16.1 
 5 50.0 
 50 95.0 
 
Small differences in specificity levels can also strongly influence PPVs. A change in specificity from 
95% to 99% results in large increases in PPVs as is evident by comparing the PPVs in Example 2 to 
those in Example 1. 
 
Example 2: Sensitivity = 95% & Specificity = 99% 
 
 Prevalence (%) PPV (%) 
 1 49.0 
 5 83.0 
 50 99.0 
 
However, even large changes in sensitivity have little impact on PPVs. This can be seen by comparing 
the PPVs in Example 1 to those in Example 3 when sensitivity drops from 95% to 75%.  
 
Example 3: Sensitivity = 75% & Specificity = 95% 
 
 Prevalence (%) PPV (%) 
 1 13.0 
 5 43.0 
 50 94.0 
 
5.2 Receiver Operating Characteristic Curves 
 
Receiver operating characteristic curves (ROC curves) graph the relationship between true positives 
(sensitivity) and false positives (1-specificity) for all of the possible scores of a depression scale. To 
demonstrate ROC curves with the example data, a fictitious gold standard is applied and ROC curves 
are shown using the software SIMSTAT. The results presented should be interpreted only as 
demonstrating the technique and not a property of the CES-D, per se. Figure 11 is the ROC curve. 
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Figure 11. The ROC Curve For The Example Data 
 
The more clearly a scale is able to discriminate between depressed and nondepressed individuals, the 
farther the curve will deviate from the line of no information (the solid diagonal line in Figure 11) 
toward the upper left corner of the graph. The area under the curve (AUC) is interpreted as an estimate 
of the probability that a randomly chosen depressed person will have a higher test score than a 
randomly chosen nondepressed person. The line of no information has an AUC probability of .50, 
whereas a perfect test would have an AUC probability of 1.00. Calculating the standard error of the 
AUC tells one if the AUC for a test is significantly different from the line of no information; that is, 
does the test provide statistically significantly more information than not administering the test. For 
example, physicians might want to know if administering a depression scale improves the accuracy of 
their diagnosis over just observing patients when they come in. In Figure 11, the AUC is 0.9583, which 
is statistically significantly different from the line of no information. 
 
ROC curves can also be used to compare two scales. For example, assume test A has a sensitivity of 
58% and a specificity of 88%, and test B has a sensitivity of 68% and a specificity of 76%. If one wants 
maximum sensitivity, then test B is better. However, if one wants maximum efficiency (i.e., maximum 
sensitivity and specificity), then it is difficult to determine which test is better. Calculating the AUC 
and its standard error allow you to determine if these two tests are significantly different from the line 
of no information, and if they are significantly different from one another. 
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6. Validity Theory With An Eye Toward Measurement Practice 
 
Let us now turn to bringing all of the preceding statistical techniques to bear on the quality of a 
measure, test score validation. 
 
6.1 Evaluating The Measures: Validity And Scale Development 
 
Measurement or test score validation is an ongoing process wherein one provides evidence to support 
the appropriateness, meaningfulness, and usefulness of the specific inferences made from scores about 
individuals from a given sample and in a given context. The concept, method, and process of validation 
are central to constructing and evaluating measures used in the human sciences, for without validation, 
any inferences made from a measure are potentially meaningless. 
 
The above definition highlights two central features in contemporary thinking about validation. First, it 
is not the measure per se that is being validated but rather the inferences one makes from a measure. 
This distinction between the validation of a scale and the validation of the inferences from scores 
obtained from a scale may appear subtle at first blush but, in fact, it has significant implications for 
measurement and testing.  
 
The second central feature in the above definition is the clear statement that inferences made from all 
empirical measures, irrespective of their apparent objectivity, have a need for validation. That is, it 
matters not whether one is using an observational checklist, an “objective” educational, economic, or 
health indicator such as number of students finishing grade 12, or a more psychological measure such 
as a self-report depression measure, one must be concerned with the validity of the inferences. 
 
In recent years, there has been a resurgence of thinking about validity in the field of measurement and 
testing. This resurgence has been motivated partly by the desire to expand the traditional views of 
validity to incorporate developments in qualitative methodology and partly by concerns about the 
consequences of decisions made as a result of the measurement process.  
 
Let us now contrast the traditional and more modern views. 
 
6.2 The Traditional View of Validity 
 
The traditional view of validity focuses on:  

• validity as a property of the measurement tool, 
• a measure is either valid or invalid,  
• various types of validity -- usually four – with the test user, evaluator or researcher typically 

assuming only one of the four types is needed to have demonstrated validity,  
• validity as defined by a set of statistical methodologies, such as correlation with a gold-

standard, and 
• reliability is a necessary, but not sufficient, condition for validity. 
 

The traditional view of validity can be summarized in the following table: 
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Type of Validity What does one do to show this type of validity? 
Content Ask experts if the items (or behaviors) tap the construct of interest. 
Criterion-related: 
              A. Concurrent 
 
               B. Predictive 

 
Select a criterion and correlate the measure with the criterion measure 
obtained in the present 
Select a criterion and correlate the measure with the criterion measure 
obtained in the future 

Construct (A. Convergent 
and B. Discriminant): 

Can be done several different ways. Some common ones are (a) 
correlate to a “gold standard”, (b) factor analysis, (c) multi-trait multi-
method approaches 

 
Table 1. The traditional categories of validity 

 
The process of validation then simply becomes picking the most suitable strategy from Table 1 and 
conducting the statistical analyses. The basis for much validation research has been a correlation with 
the “gold standard”; this correlation is commonly referred to as a validity coefficient. 
 
6.3 The Expanded (Modern) View Of Validity  
 
The purpose of the more modern view of validity is to expand upon the conceptual framework and 
power of the traditional view of validity. 
 
Thus, in the expanded, modern conception of validity, the traditional features listed above can be 
described as follows: 
 

• validity is no longer a property of the measurement tool but rather of the inferences made from 
the scores, 

• validity statements are not dichotomous (valid/invalid) but rather are described on a continuum, 
• construct validity is the central most important feature of validity, 
• there are no longer various types of validity but rather different sources of evidence that can be 

gathered to aid in demonstrating the validity of inferences,  
• validity is no longer defined by a set of statistical methodologies, such as correlation with a 

gold-standard but rather by an elaborated theory and supporting methods, 
• consequences of test decisions and use (such as unanticipated negative consequences of  

legitimate test use and/or interpretation that can be traced back to problems such as construct 
under-representation and/or construct irrelevant variance) are important considerations in the 
validation process, and  

• there is debate as to whether reliability is a necessary but not sufficient condition for validity; it 
seems that this issue is better cast as one of measurement precision so that one strives to have as 
little measurement error as possible in their inferences. 

 
In a broad sense, then, validity is about evaluating the inferences made from a measure. All of the 
methods discussed in the paper (e.g., factor analysis, reliability, item analysis, item response modeling, 
ROC curves) are directed at building the evidential basis for establishing valid inferences. 
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Glossary of Terms 
 
Binary scores: The dichotomous scores resulting from item responses. Binary scores arise from 
true/false or agree/disagree responses. Periodically, an ordinal score is re-coded in a binary format. 
 
Classical test theory: A statistical theory and set of procedures that are based on the notion that an 
observed score is comprised of a true score and an error score. Procedures commonly associated with 
classical test theory are reliability, item-total correlations, coefficient alpha, and test-retest correlations. 
It is called “classical” in reference to its historical precedent. 
 
Confirmatory factor analysis: (CFA) A statistical method generally based on a strong theoretical 
and/or empirical foundation that allows the researcher to specify an exact factor model for a set of 
variables in advance.  
 
Construct:  A label used to describe a related set of intangible or non-concrete characteristics or 
qualities in which individual’s differ. A label applied to a dimension along which individuals vary.  
 
Continuum of variation: (also called latent variable). A continuum on which individuals vary.  
 
Covariance matrix: A symmetric matrix that has the variances along the major diagonal and the 
covariances on the off-diagonal elements. A correlation matrix is a standardized covariance matrix. 
 
Covariance structure modeling: A statistical technique that aims to reproduce an observed covariance 
matrix from a set of relations on observed (and potentially) unobserved (or latent) variables. A 
powerful statistical method for: (a) testing confirmatory factor analysis models, or (b) taking into 
account measurement error in modeling. 
 
DIF:  DIF occurs when examinees from different groups show differing probabilities of success on (or 
endorsing) the item after matching on the underlying ability that the item is intended to measure.  
 
Essential tau-equivalence: A property of true scores such that one item’s true score for one individual 
is equal to another by an additive constant. As a psychometric framework it also allows for the item 
error variances to be unequal. 
 
Error score: The difference between the true score and observed score. 
 
Examinees: Those individuals who take a test or complete a questionnaire or scale. We use the terms 
examinees, test-takers, and respondents synonymously. 
 
Exploratory factor analysis: (EFA) A statistical method used to identify the factor structure or model 
for a set of variables.  
 
Generalizability theory: An approach to estimating of reliability coefficients that allows one to study 
various sources of error variance. The theory is founded on the use of analysis of variance to estimate 
reliability and errors of measurement.  
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Item bias: Item bias occurs when examinees of one group are less likely to answer an item correctly 
(or endorse an item) than examinees of another group because of some characteristic of the test item or 
testing situation that is not relevant to the test purpose. DIF is required, but not sufficient, for item bias.  
 
Item characteristic curve (ICC):  A curve showing the probability of a correct response as a function 
of the trait being measured. A description of the relationship between the continuum of variation on the 
latent variable and the probability of selecting the keyed (i.e., correct) response.  
 
Item discrimination:  The degree to which a test item differentiates between people having various 
levels of ability or knowledge of the material tested. When an external criterion is used as the basis for 
evaluating the ability of an item to discriminate along the continuum of variation it is called item 
validity. 
 
Item response modeling: (also called item response theory) A collection of statistical models and 
methods for making sense out of data obtained in the context of psychological measurement.  
 
Latent variable: (also called latent trait, or unobserved variable) A hypothetical trait or dimension 
underlying test performance. By using specified statistical models, one can derive latent trait scores, 
which are quantities indicating the test taker’s position on this latent continuum of variation.  
 
Measurement error:  Inconsistencies in scores from occasion to occasion attributable to the effects of 
variables operating in a non-systematic (i.e., random) manner.  
 
Ordinal scores: Quantitative scores resulting from item responses. The scores are ordered categories 
reflecting a quantitative the unobserved (latent) variable. An example are Likert or Likert-like 
responses.  
 
Random Effects ANOVA: In the context of analysis of variance (ANOVA), the term random effects 
denotes a factor(s) in an ANOVA design with levels that were not deliberately arranged by the 
researcher. Factors with levels that are deliberately arranged by the researcher are called fixed effects. 
Instead, levels of random factors are sampled from a population of possible samples. ANOVAs with 
fixed effects factors are often called Model I ANOVAs, whereas those with random effects factors are 
called Model II ANOVAs, and those with both fixed and random effects are called mixed model 
ANOVAs.   
 
Reliability: The proportion of observed score variance that is true score variance.  In practice, this 
quantity is estimated by computing internal consistency, test-retest, and/or alternate forms reliability 
coefficients. 
 
Standard error of measurement:  An index of the extent to which an individual’s scores vary over a 
number of parallel tests. It is also an index of the amount of measurement error in test scores; 
theoretically, the standard deviation of the distribution of observed scores around an individual’s true 
score. It is used to estimate the range in which the true score will fall or the amount of change expected 
on retesting.  
 
Structural equation modeling (SEM): SEM is a comprehensive statistical approach to testing 
hypotheses about relations among observed and latent variables. This is a commonly used term 
synonymous with covariance structure modeling. 
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True score: The expected value (or average) of an individual’s observed scores over repeated 
hypothetical testing of an item or scale. 
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