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Structural Equation
Modeling and Test
Validation

Ideally, test and measurement validation entails the-
oretical as well as empirical studies (see Validity
Theory and Applications). Moreover, the term val-
idation implies a process that takes place over time,
often in a sequentially articulated fashion. The choice
of statistical methods and research methodology for
empirical data analyses is of course central to the via-
bility of validation studies. The purpose of this entry
is to describe developments in test and measurement
validation as well as an important advancement in the
statistical methods used in test validation research,
structural equation modeling. In particular, a gener-
alized linear structural equation model (GLISEM)
that is a latent variable extension of a generalized
linear model (GLIM) is introduced and shown to
be particularly useful as a statistical methodology for
test and measurement validation research.

A Brief Overview of Current Thinking
in Test Validation

Measurement or test score validation is an ongoing
process wherein one provides evidence to support the
appropriateness, meaningfulness, and usefulness of
the specific inferences made from scores about indi-
viduals from a given sample and in a given context.
The concept, method, and process of validation are
central to constructing and evaluating measures used
in the social, behavioral, health, and human sciences,
for without validation, any inferences made from a
measure are potentially meaningless.

The above definition highlights two central fea-
tures in current thinking about validation. First, it
is not the measure per se that is being validated
but rather the inferences one makes from a measure.
This distinction between the validation of a scale and
the validation of the inferences from scores obtained
from a scale may appear subtle at first blush but, in
fact, it has significant implications for measurement
and testing because it highlights that the validity of
the inferences one makes from test scores is some-
what bounded by place, time, and use of the scores
resulting from a measurement operation.

The second central feature in the above definition
is the clear statement that inferences made from
all empirical measures, irrespective of their apparent
objectivity, have a need for validation. That is, it
matters not whether one is using an observational
checklist, an ‘objective’ educational, economic, or
health indicator such as number of students finishing
grade 12, or a more psychological measure such
as a self-report depression measure, one must be
concerned with the validity of the inferences.

It is instructive to contrast contemporary thinking
in validity theory with what is commonly seen in
many introductory texts in research methodology in
the social, behavioral, health, and human sciences.

The Traditional View of Validity

The traditional view of validity focuses on (a) validity
as a property of the measurement tool, (b) a measure
is either valid or invalid, various types of valid-
ity – usually four – with the test user, evaluator,
or researcher typically assuming only one of the
four types is needed to have demonstrated validity,
(c) validity as defined by a set of statistical method-
ologies, such as correlation with a gold-standard, and
(d) reliability is a necessary, but not sufficient, con-
dition for validity.

The traditional view of validity can be summarized
in Table 1.

The process of validation then simply portrayed
as picking the most suitable strategy from Table 1
and conducting the statistical analyses. The basis
for much validation research is often described as
a correlation with the ‘gold standard’; this cor-
relation is commonly referred to as a validity
coefficient.

The Contemporary View of Validity

Several papers are available that describe important
current developments in validity theory [4, 5, 9, 12,
13, 20]. The purpose of the contemporary view of
validity, as it has evolved over the last two decades,
is to expand upon the conceptual framework and
power of the traditional view of validity seen in most
introductory methodology texts. In brief, the recent
history of validity theory is perhaps best captured by
the following observations.
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Table 1 The traditional categories of validity

Type of validity What does one do to show this type of validity?

Content Ask experts if the items (or behaviors) tap the construct of interest.
Criterion-related:

A. Concurrent Select a criterion and correlate the measure with the criterion measure
obtained in the present

B. Predictive Select a criterion and correlate the measure with the criterion measure
obtained in the future

Construct (A. Convergent and
B. Discriminant):

Can be done several different ways. Some common ones are (a) correlate to
a ‘gold standard’, (b) factor analysis, (c) multitrait multimethod
approaches

1. Validity is no longer a property of the measure-
ment tool but rather of the inferences made from
the scores.

2. Validity statements are not dichotomous (valid/
invalid) but rather are described on a continuum.

3. Construct validity is the central most important
feature of validity.

4. There are no longer various types of validity
but rather different sources of evidence that can
be gathered to aid in demonstrating the validity
of inferences.

5. Validity is no longer defined by a set of statistical
methodologies, such as correlation with a gold-
standard but rather by an elaborated theory and
supporting methods.

6. As one can see in Zumbo’s [20] volume, there
is a move to consider the consequences of
inferences from test scores. That is, along with
the elevation of construct validity to an over-
all validity framework for evaluating test inter-
pretation and use came the consideration of
the role of ethical and social consequences as
validity evidence contributing to score mean-
ing. This movement has been met with some
resistance. In the end, Messick [14] made the
point most succinctly when he stated that one
should not be simply concerned with the obvi-
ous and gross negative consequences of score
interpretation, but rather one should consider
the more subtle and systemic consequences of
‘normal’ test use. The matter and role of con-
sequences still remains controversial today and
will regain momentum in the current climate
of large-scale test results affecting educational
financing and staffing, as well as health care out-
comes and financing in the United States and
Canada.

7. Although it was initially set aside in the move
to elevate construct validity, content-based evi-
dence is gaining momentum again in part due to
the work of Sireci [19].

8. Of all the threats to valid inferences from test
scores, test translation is growing in awareness
due to the number of international efforts in
testing and measurement (see, for example, [3]).

9. And finally, there is debate as to whether relia-
bility is a necessary but not sufficient condition
for validity; it seems that this issue is better
cast as one of measurement precision so that
one strives to have as little measurement error
as possible in their inferences. Specifically, reli-
ability is a question of data quality, whereas
validity is a question of inferential quality. Of
course, reliability and validity theory are inter-
connected research arenas, and quantities derived
in the former bound or limit the inferences in the
latter.

In a broad sense, then, validity is about evalu-
ating the inferences made from a measure. All of
the methods discussed in this encyclopedia (e.g., fac-
tor analysis, reliability, item analysis, item response
modeling, regression, etc.) are directed at building
the evidential basis for establishing valid inferences.
There is, however, one class of methods that are
particularly central to the validation process, struc-
tural equation models. These models are particu-
larly important to test validation research because
they are a marriage of regression, path analysis, and
latent variable modeling (often called factor analy-
sis). Given that the use of latent variable structural
equation models presents one of the most excit-
ing new developments with implications for validity
theory, the next section discusses these models in
detail.
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Generalized Linear Structural Equation
Modeling

In the framework of modern statistical theory, test
validation research involves the analysis of covari-
ance matrices among the observed empirical data that
arise from a validation study using covariance struc-
ture models. There are two classes of models that are
key to validation research: confirmatory factor anal-
ysis (CFA) (see Factor Analysis: Confirmatory) and
multiple indicators multiple causes (MIMIC) models.
The former have a long and rich history in vali-
dation research, whereas the latter are more novel
and are representative of the merger of the structural
equation modeling and item response theory tradi-
tions to what will be referred to as generalized linear
structural equation models. Many very good exam-
ples and excellent texts describing CFA are widely
available (e.g., [1, 2, 10]). MIMIC models are a rela-
tively novel methodology with only heavily statistical
descriptions available.

An Example to Motivate the Statistical
Problem

Test validation with SEM will be described using the
Center for Epidemiologic Studies Depression scale
(CES-D) as an example. The CES-D is useful as a
demonstration because it is commonly used in the
life and social sciences. The CES-D is a 20-item scale
introduced originally by Lenore S. Radloff to measure
depressive symptoms in the general population. The
CES-D prompts the respondent to reflect upon his/her
last week and respond to questions such as ‘My sleep
was restless’ using an ordered or Likert response
format of ‘not even one day’, ‘1 to 2 days’, ‘3 to
4 days’, ‘5 to 7 days’ during the last week. The items
typically are scored from zero (not even one day) to
three (5–7 days). Composite scores, therefore, range
from 0 to 60, with higher scores indicating higher
levels of depressive symptoms. The data presented
herein is a subsample of a larger data set collected
in northern British Columbia, Canada. As part of
a larger survey, responses were obtained from 600
adults in the general population -290 females with an
average age of 42 years with a range of 18 to 87 years,
and 310 males with an average age of 46 years and a
range of 17 to 82 years.

Of course, the composite scale score is not the
phenomenon of depression, per se, but rather is

related to depression such that a higher composite
scale score reflects higher levels of the latent variable
depression. Cast in this way, two central questions
of test validation are of interest: (a) Given that the
items are combined to created one scale score, do
they measure just one latent variable? and (b) Are
the age and gender of the respondents predictive of
the latent variable score on the CES-D? The former
question is motivated by psychometric necessities
whereas the latter question is motivated by theoretical
predictions.

CFA Models in Test Validation

The first validation question described above is
addressed by using CFA. In the typical CFA model,
the score obtained on each item is considered to be
a linear function of a latent variable and a stochastic
error term. Assuming p items and one latent variable,
the linear relationship may be represented in matrix
notation as

y = �η + ε, (1)

where y is a (p × 1) column vector of continuous
scores for person i on the p items, � is a (p × 1) col-
umn vector of loadings (i.e., regression coefficients)
of the p items on the latent variable, η is the latent
variable score for person i, and ε is (p × 1) column
vector of measurement residuals. It is then straight-
forward to show that for items that measure one latent
variable, (1) implies the following equation:

� = ��′ + �, (2)

where � is the (p × p) population covariance matrix
among the items and � is a (p × p) matrix of
covariances among the measurement residuals or
unique factors, �′ is the transpose of �, and �

is as defined above. In words, (2) tells us that the
goal of CFA, like all factor analyses, is to account
for the covariation among the items by some latent
variables. In fact, it is this accounting for the observed
covariation that is fundamental definition of a latent
variable – that is, a latent variable is defined by local
or conditional independence.

More generally, CFA models are members of
a larger class of general linear structural mod-
els for a p-variate vector of variables in which
the empirical data to be modeled consist of the
p × p unstructured estimator, the sample covariance
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matrix, S, of the population covariance matrix,
∑

.
A confirmatory factor model is specified by a vec-
tor of q unknown parameters, θ , which in turn may
generate a covariance matrix,

∑
(θ), for the model.

Accordingly, there are various estimation methods
such as generalized least-squares or maximum like-
lihood with their own criterion to yield an estimator
θ̂ for the parameters, and a legion of test statis-
tics that indicate the similarity between the esti-
mated model and the population covariance matrix
from which a sample has been drawn (i.e.,

∑ =∑
(θ)). That is, formally, one is trying to ascertain

whether the covariance matrix implied by the mea-
surement model is the same as the observed covari-
ance matrix,

S ∼= �̂�̂′ + �̂ = �(θ̂) = �̂, (3)

where the symbols above the Greek letters are
meant to imply sample estimates of these popula-
tion quantities.

As in regression, the goal of CFA is to minimize
the error (in this case, the off-diagonal elements of
the residual covariance matrix) and maximize the fit
between the model and the data. Most current indices
of model fit assess how well the model reproduces the
observed covariance matrix.

In the example with the CES-D, a CFA model with
one latent variable was specified and tested using a
recent version of the software LISREL (see Struc-
tural Equation Modeling: Software). Because the
CES-D items are ordinal (and hence not continu-
ous) in nature (in our case a four-point response
scale) a polychoric covariance matrix was used as
input for the analyses. Using a polychoric matrix
is an underlying variable approach to modeling
ordinal data (as opposed to an item response the-
ory approach). For a polychoric correlation matrix
(see Polychoric Correlation), an underlying con-
tinuum for the polytomous scores is assumed and
the observed responses are considered manifestations
of respondents exceeding a certain number of latent
thresholds on that underlying continuum. Conceptu-
ally, the idea is to estimate the latent thresholds and
model the observed cross-classification of response
categories via the underlying latent continuous vari-
ables. Formally, for item j with response categories
c = 0, 1, 2, . . . , C − 1, define the latent variable y*
such that

yj = c if τc < y∗
j < τc+1, (4)

where τc, τc+1 are the latent thresholds on the
underlying latent continuum, which are typically
spaced at nonequal intervals and satisfy the constraint
−∞ = τ0 < τ1 < · · · < τC−1 < τC = ∞. It is worth
mentioning at this point that the latent distribution
does not necessarily have to be normally distributed,
although it commonly is due to its well understood
nature and beneficial mathematical properties, and
that one should be willing to believe that this
model with an underlying latent dimension is actually
realistic for the data at hand.

Suffice it to say that an examination of the fit
indices for our example data with the CES-D, such
as the root mean-squared error of approximation
(RMSEA), a measure of model fit, showed that the
one latent variable model was considered adequate,
RMSEA = 0.069, with a 90% confidence interval for
RMSEA of 0.063 to 0.074.

The single population CFA model, as described
above, has been generalized to allow one to test the
same model simultaneously across several popula-
tions. This is a particularly useful statistical strategy
if one wants to ascertain whether their measure-
ment instrument is functioning the same away in
subpopulations of participants (e.g., if a measure
functioning the same for males and females). This
multigroup CFA operates with the same statistical
engine described above with the exception of taking
advantage of the statistical capacity of partitioning a
likelihood ratio Chi-square and hence testing a series
of nested models for a variety of tests of scale level
measurement invariance (see [1], for details).

MIMIC Models in Test Validation

The second validation question described above
(i.e., are age and gender predictive of CES-D
scale scores?) is often addressed by using ordinary
least-squares regression by regressing the observed
composite score of the CES-D onto age and the
dummy coded gender variables. The problem with
this approach is that the regression results are biased
by the measurement error in the observed composite
score. Although widely known among psychometri-
cians and statisticians, this bias is ignored in a lot of
day-to-day validation research.

The more optimal statistical analysis than using
OLS regression is to use SEM and MIMIC models.
MIMIC models were first described by Jöreskog
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and Goldberger [7]. MIMIC models, in their essence,
posit a model stating that a set of possible observed
explanatory variables (sometimes called predictors
or covariates) affects latent variables, which are
themselves indicated by other observed variables.
In our example of the CES-D, the age and gender
variables are predictors of the CES-D latent variable,
which itself is indicated by the 20 CES-D items. Our
example highlights an important distinction between
the original MIMIC models discussed over the last
three decades and the most recent developments
in MIMIC methodology – in the original MIMIC
work the indicators of the latent variable(s) were all
continuous variables. In our case, the indicators for
the CES-D latent variables (i.e., the CES-D items)
are ordinal or Likert variables. This complicates the
MIMIC modeling substantially and, until relatively
recently, was a major impediment to using MIMIC
models in validation research.

The recent MIMIC model for ordinal indicator
variables is, in short, an example of the merging
of statistical ideas in generalized linear models (e.g.,
logit and probit models) and structural equation mod-
eling into a generalized linear structural modeling
framework [6, 8, 16, 17, 18]. This new framework
builds on the correspondence between factor ana-
lytic models and item response theory (IRT) models
(see, e.g., [11]) and is a very general class of models
that allow one to estimate group differences, inves-
tigate predictors, easily compute IRT with multiple
latent variables (i.e., multidimensional IRT), investi-
gate differential item functioning, and easily model
complex data structures involving complex item and
test formats such as testlets, item bundles, test method
effects, or correlated errors all with relatively short
scales, such as the CES-D.

A recent paper by Moustaki, Jöreskog, and
Mavridis [15] provides much of the technical detail
for the generalized linear structural equation model-
ing framework discussed in this entry; therefore, I
will provide only a sketch of the statistical approach
to motivate the example with the CES-D. In this light,
it should be noted that these models can be fit with
either Mplus or PRELIS-LISREL. I chose to use the
PRELIS-LISREL software, and hence my description
of the generalized linear structural equation model
will use Jöreskog’s notation.

To write a general model allowing for predictors
of the observed (manifest) and latent variables, one
extends (1) with a new matrix that contains the

predictors x

y∗ = �z + Bx + u, where

z = Dw + δ, (5)

and u is an error term representing a specific factor
and measurement error and y∗ is an unobserved
continuous variable underlying the observed ordinal
variable denoted y, z is a vector of latent variables, w

is a vector of fixed predictors (also called covariates),
D is a matrix of regression coefficients and δ is a
vector of error terms which follows a N(0, I ). Recall
that in (1) the variable being modeled is directly
observed (and assumed to be continuous), but in (5)
it is not.

Note that because the PRELIS-LISREL approach
does not specify a model for the complete p-
dimensional response pattern observed in the data,
one needs to estimate the model in (5) with PRELIS-
LISREL one follows two steps. In the first step (the
PRELIS step), one models the univariate and bivari-
ate marginal distributions to estimate the thresholds
and the joint covariance matrix of y∗, x, and w and
their asymptotic covariance matrix. In the PRELIS
step there is no latent variable imposed on the esti-
mated joint covariance matrix hence making that
matrix an unconstrained covariance matrix that is just
like a sample covariance matrix, S, in (3) above for
continuous variables. It can therefore be used in LIS-
REL for modeling just as if y∗ was directly observed
using (robust) maximum likelihood or weighted least-
squares estimation methods.

Turning to the CES-D example, the validity
researcher is interested in the question of whether
age and gender are predictive of CES-D scale scores.
Figure 1 is the resulting generalized MIMIC model.
One can see in Figure 1 that the correlation of age
and gender is, as expected from descriptive statis-
tics of age for each gender, negative. Likewise, if
one were to examine the t values in the LISREL
output, both the age and gender predictors are statis-
tically significant. Given the female respondents are
coded 1 in the binary gender variable, as a group
the female respondents scored higher on the latent
variable of depression. Likewise, the older respon-
dents tended to have a lower level of depression
compared to the younger respondents in this sam-
ple, as reflected in the negative regression coefficient
in Figure 1. When the predictive relationship of age
was investigated separately for males and females via
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this generalized MIMIC model, age was a statisti-
cally significant (negative) predictor for the female
respondents and age was not a statistically significant
for male respondents. Age is unrelated to depression
level for men, whereas older women in this sample
are less depressed than younger women. This sort of
predictive validity information is useful to researchers
using the CES-D and hence supports, as described at
the beginning of this entry, the inferences made from
CES-D test scores.
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