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Abstract 

The focus of this paper was whether, and under what conditions, can multilevel (HLM) analysis 
of longitudinal data adequately handle missing data. Two studies were reported: the first was an 
investigation of real data and the second was a Monte Carlo simulation.  For the first study, the 
focus was on the effect of types of missing data  missing completely at random (MCAR); 
missing not at random (MNAR); and two types of data missing at random (MAR)  on model 
parameter estimates and statistical results. The results of this study highlighted the importance of 
model specification. That is, it highlighted that when the model is correctly specified missing 
data, of all types, are correctly handled using HLM analyses. The second study focused on the 
role of level-l model mis-specification in the context of the four different types of missing data.  
Results indicated that when the level-1 model is correctly specified the parameter estimates are 
nearly always the same (and the same as the complete data case) irrespective of the degree or 
kind of missing data. However, this finding did not hold when the level-1 model is mis-specified.  
Overall, the findings highlight that claims in the research literature of the ability of HLM 
analyses to handle missing data should be qualified by the statement that this is only true when 
the correct model is specified. 

 
Author Note 

 Anat Zaidman-Zait, Ph.D., is Associate Professor, Tel-Aviv University.  During this 
project she was a Azrieli Foundation Post-Doctoral Research Fellow  at Tel-Aviv University as 
well as a Michael Smith Foundation for Health Research (MSFHR), and Social Sciences and 
Humanities Research Council of Canada (SSHRC) post-doctoral fellow at UBC. Her research 
focuses jointly on Human Development, and Measurement, Evaluation and Research 
Methodology. 



 

 

19 

 

 Bruno D. Zumbo, Ph.D., is Professor of Measurement, Evaluation and Research 
Methodology as well as member of the Department of Statistics and the Institute of Applied 
Mathematics at the University of British Columbia.  

Address Correspondence to Professor Bruno D. Zumbo, The University of British Columbia, 
Department of ECPS, Vancouver, B.C.  CANADA V6T 1Z4. E-mail:  ccou.zumbo@ubc.ca   
http://educ.ubc.ca/faculty/zumbo/cv.htm

 

Introduction 

Longitudinal studies are widely used in educational and policy research (e.g., Goldenberg, 
Gallimore, Reese, & Garnier, 2001; Jimerson, Egeland, Sroufe, & Carlson, 2000; Zumbo, 1999). 
Since the mid-1970s methodologists have developed a class of statistical models that enable 
researchers to study change  see Singer & Willett (2003) for a review. This class of statistical 
models goes by various names in the research literature:  individual growth models, random 
coefficient models, multilevel models, mixed models, or hierarchical linear models. Longitudinal 
data can be viewed as multilevel data with repeated measurements nested within individuals. 
This structure involves a two-level model, with the series of repeated measures at the lowest 
level, and the individual persons at the next level. Therefore, in the first level of an analysis of 
change, within-individual change over time is examined. In the second level of the analysis inter-
individual differences in change are examined.  

Missing Data in Multilevel Models for Studying Change  

Statistical analysis with missing data has always been a challenge. In general across a broad class 
of commonly used statistical techniques, missing data may result in biased parameters estimates, 
inflated Type I and Type II error rates during hypothesis testing, and hence a degradation of the 
performance of confidence intervals. In addition, missing data can reduce statistical power 
(Collins, Schafer, & Kam, 2001).  

One of the advantages of multilevel analysis of longitudinal data is its ability to handle missing 
data (Bryk & Raudenbush, 1992; Snijders, 1996).  Hox (2000, 2002) is among the few to clarify 
that this advantage refers to the ability to handle models with varying time points. Multilevel 
models do not assume equal numbers of observations, or even fixed time points, so respondents 
with missing data do not cause special problems (Hox, 2000).  This advantage focuses on the 
response (dependent) variable in the analysis; however, if a measurement on an explanatory 
(independent) variable is missing the typical treatment is to remove the case completely.  

The central purpose of this study is to explore effects of various missing data causes on the 
results of a multilevel analysis of longitudinal data. We report two studies. In this first study we 
investigated whether manipulating the missing data source with a real data example would 
change the parameter estimates in the multilevel model.  We used real data as our base because 

Bruno Zumbo
Cross-Out

Bruno Zumbo
Cross-Out

Bruno Zumbo
Inserted Text
E-mail:  bruno.zumbo@ubc.ca

Bruno Zumbo
Text Box
bruno.zumbo@ubc.ca



Missing Data in Multilevel Models 

 

20 

 

we wanted to have as much generalizability to commonly found data as possible. The results of 
this first study raised a question for us as to what would happen in terms of missing data in 
varying settings of level-1 model mis-specification. Therefore the results of the first study 
informed the second study, a Monte Carlo simulation study wherein we manipulated the level-l 
model mis-specification. 

 

Causes of Missingness 

A significant theoretical advance in the statistical and mathematical study of missing data 
occurred with the formalization of, and focuses on, why the data is missing. Little and Rubin 
(1987) presented a statistical framework to understand the processes that generated the missing 
data with respect to the information provided about the unobserved data, rather than the data one 
has at hand. The focus now was on the processes that lead to the missing data. They presented 
three missing data processes: missing completely at random (MCAR), missing at random 
(MAR), and missing not at random (MNAR). See Collins, Schafer, and Kam (2001) as well as 
Wothke (2000) for detailed descriptions of the MCAR, MAR, and MNAR missing data 
processes.   

Collins, Schafer, & Kam (2001) emphasized that the distinction among MCAR, MAR and 
MNAR is based on the relationships between variables of interest and variables explaining the 
missingness. Another important distinction is whether the cause of missingness is accessible or 
inaccessible (Graham & Hofer, 2000). An accessible cause occurs when the cause has been 
measured (often fortuitously) and it can be included in the statistical data model. Inaccessible 
cause of missingness is when the cause has not been measured and it is not available for analysis. 

To help make the abstract missing data concepts more concrete, let us imagine an example (that 
will also be used again later in the paper) wherein one has collected repeated measures data 
about cognitive ability over four time points.  Throughout this example the focus is on missing 
data for the cognitive variable, the dependent variable. MCAR implies that the reason for the 
missing cognitive ability score data is not related to the cognitive variable itself (e.g., only high 
scoring data is missing) and the missingness is also not due to any another variables, whether 
these other variables are accessible or inaccessible in your data at hand. Hence the missingness 
is, as the name suggests, completely at random.  There are two types of MAR missingness that 
are of interest. MAR scenario-A implies that the reason for the missing cognitive ability score 
data is not related to the variable itself but is related, for example, to other data accessible in the 
sample (e.g., gender); however, in this scenario gender is not related to the cognitive ability 
variable.  Unlike MAR scenario-A, in MAR scenario-B the other accessible data (e.g., gender) 
would be related to the cognitive ability variable. Therefore, in MAR scenario-B the missingness 
is explainable through another variable, in this case gender.  MNAR would be a scenario in 
which the missingness on the cognitive is due to the cognitive variable itself  for example, the 
missing data (on cognitive ability) is only for those with low scores on cognitive ability. 
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 Study 1  Simulation with Real Data 

 Study one focused on investigating the effects of various missing data sources (i.e., 
causes) on the resulting parameter values of a multilevel growth model. This complete data was 
manipulated in a variety of ways described below to mimic the various causes of missing data, as 
described by Little and Rubin (1987), and Collins et al. (2001).  This first study was not a 

 
simulation in the purely mathematical sense wherein one mimics a model with one set of data. 

Method 

Procedure 
The data. 

time (Singer & Willet, 2003) were used. The repeated measure dependent variable was scores on 
the opposite naming cognitive task. Thirty-five individuals were measured on four occasions. 
Time was coded 0, 1, 2, and 3, hence the intercept estimates the true value of opposite naming 
skill at occasion 0 (initial status) and the slope estimates the rate of change in opposite naming 
skill across occasions.  

Simulated Missing Data Mechanism  
The Little and Rubin mathematical framework for missing data was operationalized in the four 
scenarios described above: MCAR, MNAR, and two types of MAR.  In addition, these four 
missing data scenarios were investigated with 7 and 14 percent missing data 10 and 20 cases 
missing the dependent variable. 

In the MCAR condition, missing values were randomly imposed on the Y variable, the 
dependent variable in the study, independent of any variable.  

In the missing not at random (MNAR) condition, missing values were imposed on the Y variable 
depending on its own value. To achieve this, the distribution of Y was divided into quartiles. 
Next, missing values were randomly selected from all the cases in the lowest quartile. In this 
way, the missingness is dependent on the level of the cognitive variable i.e., the lowest 
quartile. 

Two different types of MAR were investigated. In the first MAR scenario, denoted (MAR) 
scenario-A, the missingness was not related to the cognitive ability itself but related to another 
variable, gender. Under this condition, missing values were imposed on the cognitive ability 

nder. To achieve this, roughly half of the participants 
were (randomly) coded as girls, and the rest were coded as boys. Next, the data were sorted 
according to gender and the missing values were randomly selected only from the girls. 
Therefore, the missingness depended on gender, but gender was not related to the cognitive task. 

In the second MAR scenario, scenario-B, the missingness was related to gender, however in this 
scenario, gender was related to the cognitive task itself.  Under this scenario, the missingness 
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was higher among girls who had low scores on the cognitive variable. To achieve this, the 
distribution of the cognitive variable was divided into quartiles only for the girls. Next, the data 
were sorted according to gender and according to the cognitive variable.  Finally, the missing 
values were randomly selected from girls in the lowest 25% of the cognitive task distribution.  

 

Results 

Complete Data Analysis 

The complete data were used as a comparative baseline condition. Exploratory analyses were 
conducted in order to describe how individuals in the data set change over time. Scatter diagrams 
were used to visualize the empirical growth plot (Singer & Willet, 2003).  Like Singer and Willet 
(2003), inspection of the empirical growth plots lead us to conclude that the cognitive variables 
(i.e., the opposite naming skill) increases over time, and that the pattern of change appears to be 
linear for most of the sample. In addition, an exploratory ordinary least squares regression model 
was fit to each individual to summarize the growth trajectory.  The resultant R-squared statistics 
reveal that 68.6% of the R2 statistics were above 0.90. In summary, a linear change trajectory 
seems to be very reasonable for many individuals in the sample. 

 An unconditional linear growth model. In the next step, as is commonly recommended, 
an unconditional linear growth model was fit to the data. The unconditional growth model 

 

Level 1: Yij = 0j + 1j(TIMEij) + rij 

Level 2: 0j =  00 + u0j]  

 1j =  10 + uij 

The combined model is: 

Yij = [ 00 + 10TIMEij] + [u0j + uij(TIMEij) + rij] 

 Fixed effects  Random effects 
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In the unconditional linear growth model, for the complete data, both fixed effects were 
statistically significant. The results are displayed in Table 1.  The second column, from the left, 
is the results of the complete data  our baseline condition.  As we can see in Table 1, both fixed 
effects were statistically significant and the average intercept score was 164.37 and the rate of 
change was 26.96 points per testing time. 

 

A linear growth model with a person-level covariate.  Next, a linear growth model with a 
person-  

Level 1: Yij = 0j + 1j(TIMEij) + rij 

level 2: 0j =  00 + 01(CCOVARJ) + u0j 

  1j =  10+ 11(CCOVARJ) + u1J 

The combined model is: 

Yij = [ 00 + 10(TIMEij) + 01(CCOVAR) + 11(CCOVAR)(TIMEij)] + [u0j + 1j(TIMEij) + rij] 

    Fixed effects     Random effects 

In order to explain individual variation in opposite naming ability, Willett considered a person 
level covariate model, denoted CCOVAR (the grant mean centered covariate), which models 
whether variation in intercepts and slopes is related to a covariate (e.g., child SES).  The results 
of this model fit to the complete data can be seen second column, from the left, in Table 2.  
Using child SES as the covariate, the results of the complete data show that the SES is not a 
statistically significant predictor of the intercept (i.e., the starting point of the trajectory of 
change) but is a statistically significant predictor of the slope (i.e., the rate of change). 
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Applying Missing Data Mechanisms  

The results of the unconditional and conditional models with the different mechanisms of 
missing data at a rate of 14% are displayed in the last four columns of Tables 1 and 2, 
respectively.  We did not report the results of the 7% rate of missingness because they are the 
same as the more extreme case of 14%.  Under all conditions of missingness both fixed effects 
remained statistically significant. Moreover, the estimates of the intercept and time fixed effect 
coefficient, as well as the standard errors, demonstrated only minor changes all reasonably close 
to the complete data values. Note that under MNAR and MAR scenario-B mechanism the 
estimates were somewhat worse. With regard to the estimates of the covariance-variance matrix, 
some changes occurred; however, not in a consistent way that reflects the different missingness 
mechanisms.  

In the linear growth model with a person-level covariate, the fixed effects are the same as in the 
unconditional model. The effect for time and the time-by-covariate interaction remained 
significant in all the analyses regardless of the missing mechanism and the rate of missingness 
(7% and 14%). Moreover, the estimated values are close to the population (completed data) 
values. 

The variance covariance matrix, the last four rows of the tables, resulted in somewhat different 
variance estimates for the slopes and intercepts. According to the complete data analysis, and 
computing the appropriate intraclass correlation, the covariate accounts for 19% of the variation 
in growth rate.  However, MNAR and MAR scenario-B mechanisms inflated the variance in 
growth rate explained by the covariate by additional 7% to 15%. 

Conclusions 

missing data as described by, for example, Bryk & Raudenbush (1992), Snijders (1996), and Hox 

There is some persuasive power to be had by seeing an abstract statistical claim illustrated with 
real data, as we did in Study 1.  

The findings, however, are not just illustrative for the multi-level modeling user but also touch at 
the core statistical issue of model mis-specification. That is, in the complete data in Study 1, for 
most individuals, the linear change model fits very well their observed and fitted values nearly 
coincide (based on data visualization and R-squared statistics).  The available data points that are 
left in the model are strong enough and provide an indication of the correct model, even without 
the full information due to missingness. Hence, missing data did not cause any changes in the 
model parameter estimates. When the model is correctly specified missing data will most likely 
not cause dramatic change in the parameters estimation even when the supposed cause of 
missingnesss is MNAR or MAR where the missingness is related indirectly (i.e., MAR Scenario-
B).  Missing not at random (MNAR) is usually considered the worst scenario of missing data that 
increases the risk for reaching incorrect conclusions.  It is worth noting that the case of MAR 
condition B there is a risk for increased biases, similarly to a MNAR scenario.  It is important to 
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keep in mind that when the magnitudes of the effects in the multilevel model are so large the 
presence of missing data (even in the MNAR setting) would not influence the conclusions.  

Study 2  Monte Carlo Simulation 

An interesting feature of the data used in Study 1 is that a linear growth curve fit the data well 
(nearly 69%) and showed an R-squared of greater than 0.90 for the level-1 unconditional linear 
growth curve; with the level-l model accounting for 83% of the variation.  In statistics it is well-
known that model mis-specification can accentuate biases in parameter estimates in certain 
contexts. For example, in the field of complex survey data it is well-known that model mis-
specification can alter the effects of applying sample weights, wherein sample weights play less 
of a role when the model is correctly specified.  Therefore, the purpose of the study 2 was to 
investigate the influence of different missingness scenarios when the level-1model is not 
correctly specified.  For the purposes of this study it is sufficient to investigate the unconditional 
growth curve model because any effects on it will carry forward to the conditional model. 

Method 

Procedure 

The dependent variables (i.e., the parameter estimates in the various conditions) in the simulation 
will be the same as those in Study 1, above.  All of the independent variables in Study 1 were 
included in Study 2 (i.e., the various causes of missingness). In addition, we varied model mis-
specification by simulating linear, quadratic, and cubic level-1 growth curves. It should be noted, 
however, that we again fit linear level-l models in all cases and hence demonstrating a naïve 
model mis-specification error, as commonly found in practice.  That is, this simulation mimics 
the empirical case wherein one fits a linear level-l model irrespective of whether the level-l data 
relationship is strictly linear in the population.  Figure 1 depicts the degrees of mis-specification 
in the simulation. As one can see, given that the range of time is only four points, the cubic 
function is just a more extremely non-linear version of the quadratic. 

To allow us to compare our results to the findings above, and to give us generalizability to real 
data situations, we based our simulation parameters on the Willett (1988) data described above.  
That is, we simulated the same sample size as in Study 1, used the same coding of time, and used 
the Willett (1998) data parameters to generate the level-1 curve for each simulated study 
participant.  In essence, the Willett (1998) data served as the population structure for the 
simulation.  
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Figure 1.  Plots of The Linear, Quadratic, And Cubic Level-1 Curves 

For each simulation condition (i.e., for the complete data and for each of the four simulated 
missing data mechanisms described above) ten replications of the simulation experiment were 
conducted. We stopped at ten replications because the replication-to-replication variability was 
very small obviating the necessity for more replications at this point. 

Results and Conclusions 

Table 3 displays the results of the study.  Table 3 is arranged in four sets of columns. The 
column on the far left of the table describes the data missingness mechanisms investigated in this 
simulation: no missingness (i.e., complete data), and MCAR, MNAR, MAR Scenario-A, and 
MAR Scenario-B for both 7 and 14 percent missing data as used in Study 1 above.  Starting 
from the far right of the table we list the average values (over the 10 replications) of the intercept 
and time parameters in the level-1 unconditional model.  Starting from the far right of the table 
one can see the columns for the intercept and time parameters for the cubic, quadratic, and linear 
level-l growth curves.  As a reminder, the unconditional linear model was fit for each replication 
therefore the linear condition represents a correctly specified level-l model whereas quadratic 
and cubic are mis-specified.  It is important to note that one should interpret the values reported 
in Table 3 for each section (linear, quadratic, and cubic) separately and relative to the baseline 
condition, the complete data, reported in the first row of the data. Therefore, to interpret the 
effect of the missing data mechanisms on the correctly specified (linear) model one notes that the 
complete data intercept is 166.06 and that following down that column one could compare the 
intercept values for the eight missing data mechanisms to this complete data value.
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The results are a striking demonstration of the interaction of the cause of missing data with 
model mis-specification. Focusing on the columns of Table 3 containing the results for the linear 
(correctly specified) case, the eight values (for each of the intercept and time parameters) are 
strikingly similar irrespectively of the degree of missingness or the missingness mechanism. In 

Scenario-B or MNAR the intercept and time parameters are nearly the same (to two decimal 
points) as the complete data.  Focusing on statistical significance, it is expected from the 
simulation design, that the intercept and time parameters would be statistically significant. This 
was found to be true in all of the correctly specified linear cases.  

When one focuses on the quadratic or cubic cases (i.e., when the model we are fitting is mis-
specified) then findings from the correctly specified case do not hold up. That is, when compared 
to their respective complete data cases, the data missingness mechanisms have a distorting effect 
on the findings especially, the MNAR and MAR Scenario-B cases.  Focusing on the statistical 
significance, all of the significance tests of the parameters were, as expected by simulation 
design, statistically significant except for MAR Scenario-B wherein all cases the time effect was 
statistically non-significant. 

In summary, when the level-1 model is correctly specified the parameter estimates are nearly 
always the same (and the same as the complete baseline data case) irrespective of the degree or 
kind of missing data.  However, when the model is mis-specified the results are quite different 
than the reference cell of complete data.  Furthermore, the results of the mis-specified models all 
triggered a warning in the software that there was a lack of convergence. We increased the 
number of iterations for convergence but this warning continued.  It is interesting that this 
warning only occurred in the mis-specified cases; however, in general this warning is neither a 
necessary nor sufficient sign of model mis-specification. 

General Discussion 

The results reported herein remind us that Bryk & Raudenbush (1992), Snijders (1996), Hox 
(2000, 2002) and others are correct in stating that one of the advantages of multilevel (HLM) 
analysis of longitudinal data is its ability to handle missing data; however, the underlying 
condition of a correctly specified level-l model is not explicitly stated.  Our results highlight that 
if the model is correctly specified then multilevel (HLM) analysis of longitudinal data is able to 
handle missing data.  If the level-1 model is not correctly specified, multilevel models are not 
able to handle missing data well and the conclusions are distorted by the various missing data 
mechanisms.  Our findings also highlight the importance of visual inspection of the level-1 
curves, data inspection, via graphics. Of course, as we know in statistics more generally, this 
visual inspection does not guarantee that one will fit the correct model.  
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