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Supplementary Technical Appendix 

This Appendix provides additional information for the paper, Latent Variable Mixture 

Models: A Promising Approach for the Validation of Patient Reported Outcomes. It elaborates 

the IRT and latent factor analysis representations of the GRM, the computation of predicted 

probabilities based on a latent variable mixture model (LVMM), notes about model estimation of 

a LVMM, notes about explaining latent class membership, and annotated MPlus 5.2 syntax for 

fitting a LVMM (i.e., the syntax for the example described in the manuscript).  

IRT and latent factor analysis representations of the GRM 

Using the conventional IRT notation for the GRM [1], the cumulative probability ( )ijP of 

an item i response at or above category j  is expressed as follows: 
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where α denotes the discrimination parameter for item i, β denotes the difficulty parameter for 

the response categories less one, for each item i, and θ denotes the (predicted) latent factor score. 

This is equivalent to a factor analysis representation of the GRM based on Muthén’s general 

latent variable modeling framework [2], where the relationships between a latent factor (a.k.a. 

“theta”) and ordinal indicators are represented in a form equivalent to a logistic proportional 
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odds model. The corresponding formula for the cumulative probability ( )ijP of an item i response 

at or above category j is expressed as follows [3]: 
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where ij denotes the thresholds between the categories of item i, and i denotes the factor loading 

for item i. If θ is normally distributed with a mean of zero and variance of one, none of the 

thresholds or factor loadings are constrained, and a logistic link function with maximum 

likelihood estimation is used, the following transformation can be applied to convert the Mplus 

thresholds (τ) and factor loadings (λ) of Equation 2 into the difficulty (β) and discrimination (α) 

parameters of the GRM [4]: 
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The computation of predicted probabilities based on a LVMM 

A LVMM based on the GRM can be obtained by allowing the factor loadings and the 

thresholds to vary across two or more latent classes. The cumulative probability of an item 

response at or above category j within a latent class can be computed as follows [3]: 
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where C is the latent class variable with k classes. The cumulative probability of an item 

response at or above category j, for an individual, within the combined (heterogeneous) 

population is obtained by summing the product of the individual’s item response probabilities 

within the latent classes and the posterior probability of latent class membership, as is shown in 

the following equation: 



Running head: LATENT VARIABLE MIXTURE MODELING 3 

 
1

(   | ) ( * (   | ))
K

ij k ijk

k

P Y j X P Y j 


   , (5) 

where Xk is the posterior probability of an individual being in class k, which when summed 

across all classes equals 1.0. The posterior probability of latent class membership can be 

obtained using Bayes’ theorem by multiplying the likelihood of the model-predicted factor score 

(theta), for an individual, by the probability of theta given a normal distribution (i.e., a normal 

prior) [5, 6]. 

The probability of an item response corresponding with the predicted theta score for an 

individual is obtained in a similar way as would be done for a proportional odds logistic 

regression model, which is achieved as follows [see 6, 7, 8]: 

 if j is the first category:    1| 1    1| ,ij ijP Y j P Y j       (6a) 

 if j is a middle category:      1|     |   1| ,ij ij ijP Y j P Y j P Y j          (6b) 

 if j is the last category:    |     | ,ij ijP Y j P Y j      (6c) 

where    |ijP Y j  is the cumulative probability obtained from Equations 2 (one-class model) or 

5 (mixture model).  

Notes about model estimation of a LVMM 

The expectation maximization (EM) algorithm and various extensions thereof are widely 

used to obtain the maximum likelihood parameter estimates in mixture models and in many other 

applications where there are unknown elements (e.g., missing data) [9, 10]. This is an iterative 

process that begins by computing the posterior probabilities based on the expectation of the log 

likelihood initially using arbitrary starting values (the E-step). The resulting information is used 

in the M-step to produce new maximum likelihood parameter estimates consistent with the 

observed data that are used in the next iteration. These steps are repeated until the likelihood no 
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longer improves beyond a predetermined small increment. It is important to recognize that the 

estimation procedures for mixture models, in general, are susceptible to local maxima resulting 

in the model’s convergence on a sub-optimal solution [11]. That is, a local maximum in the 

likelihood value could be obtained as a result of the parameter starting values (a.k.a. initial 

values). It is therefore recommended to attempt to replicate the maximum likelihood using many 

sets of different starting values. The plausibility of having found the optimal maximum 

likelihood is increased when different starting values result in the same (replicated) maximum 

likelihood. To further assess whether the optimal maximum likelihood has been obtained, it is 

recommended to compare the stability of the parameter estimates, the predicted factor scores, 

and the posterior probabilities of the latent class memberships across neighboring solutions. If 

these are similar, then the model is deemed to be adequately defined for the data. In the absence 

of replicating the maximum likelihood, and to increase the chances of obtaining an optimal 

solution, researchers can increase the number of starting value sets, or the number of iterations, 

or address potential sources of under-identification (such as very sparse frequencies in the cross-

tabulations of the item responses). 

Notes about explaining latent class membership 

We demonstrate a two-step approach that involves first identifying the individuals’ most 

likely latent class membership (based on the estimated model) and subsequently regressing class 

membership on exogenous variables (using logistic regression for categorical data). This 

approach, however, may lead to inaccurate results if, for example, the latent classes are poorly 

discriminating leading to greater uncertainty in the prediction of latent class membership (i.e., a 

low entropy value is obtained). In this situation it is desirable to use pseudo-class draws to more 

accurately estimate the parameters and variances of the variables explaining latent class 
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membership [12-14]. As nicely exemplified in the description provided by Petras and Masyn 

[15], pseudo-class draws involve taking random draws from the discrete posterior latent class 

probability distribution of class membership for each individual in the sample. Typically it is 

recommended that one take 20 draws [12]. The logistic regression model with the variables 

explaining latent class membership is estimated repeatedly for the 20 draws and the obtained 

parameters are averaged and variances estimated.
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Mplus 5.2 syntax for a 3-class LVMM 

 

Syntax Explanation 

USEVARIABLES ARE SFRC_03-SFRC_10 SFRC_11R SFRC_12R; 

CATEGORICAL ARE SFRC_03-SFRC_10 SFRC_11R SFRC_12R; 

Specifies 10 ordinal categorical variables. 

AUXILIARY ARE (r) CCCC_031 CCCC_051 CCCC_061 CCCC_081 

CCCC_101 CCCC_121 CCCC_191R CCCC_280 CCCC_901 CCCC    F1 

DHHC_SEX DHHC_AGE; 

Specifies the variables that are saved and subsequently used in a 

multinomial model using pseudo-class draws of the posterior 

probabilities of latent class membership [12-14]. These variables are 

not included in the LVMM. Rather, “auxiliary (r)” instructs the 

software to run a separate model. 

CLASSES = C(3); Specifies three latent classes. 

 

ANALYSIS: 

TYPE = MIXTURE; 

Specifies a mixture model. 

ESTIMATOR = MLR; Specifies a robust maximum likelihood estimator. 

 

ALGORITHM = INTEGRATION; 

INTEGRATION = STANDARD(50);  

ADAPTIVE = ON; 

CHOLESKY = ON; 

Specifies adaptive integration with 50 integration points for the latent 

factor. 

LINK = LOGIT; Specifies a logistic link function (proportional odds in the case of 

ordinal variables). 

MITERATIONS = 1000; Specifies the maximum number of iterations. 

 

STARTS = 5000 1000; 

STITERATIONS = 20; 

 

Specifies 5,000 sets of stage 1 random starting values with 20 

iterations, followed by 1,000 sets of stage 2 random starting values 

with the greatest log-likelihood in stage 1.  

K-1STARTS = 5000 1000; 

 

Specifies 5,000 and 1,000 sets of stage 1 and 2 starting values 

respectively for the k-1 class model used for the bootstrapped 

likelihood ratio test and the Vuong-Lo-Mendell-Rubin likelihood ratio 

test [16-18]. 
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Syntax Explanation 

LRTSTARTS = 1000 200 5000 1000; Specifies the stage 1 and 2 starting values for the k-1 class model (first 

two numbers respectively) and k class model (last two numbers) for 

the simulated data used for the bootstrapped likelihood ratio test [9, 

19]. 

MODEL: 

%OVERALL%   

physfun by SFRC_03* SFRC_04-SFRC_10 SFRC_11R SFRC_12R; 

[physfun@0];    

physfun@1;   

Specifies the overall population model, with all slopes and thresholds 

to be estimated, and a standardized latent factor (mean of 0 and 

variance of 1) (the thresholds are estimated as the default and are 

therefore not specified in the syntax). 

%C#1% 

physfun by SFRC_03* SFRC_04-SFRC_10 SFRC_11R SFRC_12R; 

[SFRC_03$1-SFRC_10$2]; 

[SFRC_11R$1-SFRC_12R$1]; 

 

%C#2% 

physfun by SFRC_03* SFRC_04-SFRC_10 SFRC_11R SFRC_12R; 

[SFRC_03$1-SFRC_10$2]; 

[SFRC_11R$1-SFRC_12R$1]; 

 

%C#3% 

physfun by SFRC_03* SFRC_04-SFRC_10 SFRC_11R SFRC_12R; 

[SFRC_03$1-SFRC_10$2]; 

[SFRC_11R$1-SFRC_12R$1]; 

Specifies the within-class models, with all slopes and thresholds to be 

estimated within each of the latent classes (the thresholds are indicated 

using square brackets). The mean and variance of the within class 

latent factors are constrained to be equivalent to the population mean 

and variance of 0 and 1 by default. 

OUTPUT:   

RESIDUAL  

 

STANDARDIZED  

 

TECH1  

 

TECH2 

 

TECH3  

 

 

Produces univariate and bivariate residuals within each of the latent 

classes.  

Produces the standardized model results. 

 

Produces the parameter specification details and starting values. 

 

Produces the parameter derivatives. 

 

Produces the correlation and covariance matrices of the estimated 

parameters. 
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Syntax Explanation 

 

TECH7  

 

TECH10  

 

 

 

TECH11  

 

TECH14; 

 

Produces the within-class frequency distributions using pseudo-class 

draws to determine latent class membership. 

Produces the univariate and bivariate residuals of the overall model, 

including the standardized difference scores for each categorical 

comparison, and the likelihood ratio test for each variable [20]. 

Produces the Vuong-Lo-Mendell-Rubin likelihood ratio test [16-18]. 

 

Produces the bootstrapped likelihood ratio test [9, 19]. 

* Default settings. The following additional default settings were adopted (not explicitly specified): EM convergence criteria; Maximum and minimum values of 

logit thresholds; Random seed specification.
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