In this packet you will receive the following:

1. Laboratory handout 1
2. Laboratory 1 assessment sheet
3. Laboratory handout 2
4. Laboratory 2 assessment sheet
5. Laboratory handout 3
6. Laboratory 3 assessment sheet
7. Complete set of course readings
 a. Anatomic and physiologic basis for surface electromyography, Lamb and Hobart
 b. Instrumentation, Gerleman and Cook
 c. Functional muscle: effects on electromyographic output, Redfer
 d. Effects of skin electrode position on averaged electromyographic potentials, Zuniga, Truong, and Simons
 e. Fatigue of maintained voluntary muscle contraction in man, Stephens and Taylor
 f. Electromyography reliability in maximal and submaximal isometric contractions, Yang and Winter
 g. Electromyographic amplitude normalization methods: improving their sensitivity as diagnostic tools in gait analysis, Yang and Winter
 h. The relationship between cadence and lower extremity EMG in cyclists and noncyclists, Marsh and Martin
 i. Biomechanics of tendons and ligaments, Carlstadt and Nordin
 j. Biomechanics of skeletal muscle, Pitman and Peterson
 k. Muscle across the elbow joint: a biomechanical analysis, An, Hui, Morrey, Linscheid, and Chao
 l. Isokinetic strength aspects of human joints and muscles, Cabri
 m. Prediction of gastrocnemius length from knee and ankle joint posture, Grieve, Pheasant, and Cavanagh
 n. Muscle balance between hamstrings and quadriceps during isokinetic exercises, Sanderson, Musgrove, and Ward.
 o. Correction of isokinetic and isometric torque: recordings for the effects of gravity, Nelson and Duncan
 p. Posture related to myoelectric silence of erector spinae during trunk flexion, Kippers and Parker
 q. The projection of the ground reaction force as a predictor on internal joint moments, Wells
 r. Knee flexor moments during propulsion in cycling – a creative solution to Lombard’s Paradox, Gregor, Cavanagh, and Lafontaine